Simulation based Timing Analysis of FlexRay Communication at System Level

Stefan Buschmann Till Steinbach Franz Korf Thomas C Schmidt

Hamburg University of Applied Sciences stefan.buschmann@haw-hamburg.de {till.steinbach, korf, schmidt}@informatik.haw-hamburg.de

6th International Workshop on OMNeT++ March 5th. 2013

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

Concept

Results & Evaluation

- 1 Introduction
- 2 Background & Requirements
- 3 Concept
- 4 Results & Evaluation
- 5 Conclusion & Outlook

Motivation

Why simulate FlexRay on system level?

- State-of-the-art automotive fieldbus
- Simulation of complex networks
- Important in automotive development

FlexRay-Simulation in OMNeT++

S. Buschmann

Introduction

Background & Requirements

Concept

Results & Evaluation

Goals

FlexRay-Simulation in OMNeT++

S. Buschmann

Introduction

Background & Requirements

Conce

Results & Evaluation

- Configurable FlexRay simulation
- Compliant to FlexRay specification
- Compatible with other simulation models
 - CAN, Real-time Ethernet, Ethernet-AVB

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

Concept

Results & Evaluation

Conclusion & Outlook

1 Introduction

2 Background & Requirements

3 Concept

4 Results & Evaluation

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

oncep

Results & Evaluation

- Layer 1 and 2 in the OSI model
- Communication over two channels
 - Redundant transmission
 - Different data per channel
- 10 MBit/s per channel
- Synchronised time base
- Event- and time-triggered communication

FlexRay Communication cycle

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

Concep

Results & Evaluation

- Time-triggered communication
- Event-triggered communication

■ Time measurement with synchronisation messages in the static segment

■ Combination of two synchronisation methods

$\begin{array}{c} {\sf FlexRay\text{-}Simulation\ in}\\ {\sf OMNeT\text{+}+} \end{array}$

S. Buschmann

ntroduction

Background & Requirements

Concep

Results & Evaluation

Requirements

For the FlexRay model

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

Concep

Results & Evaluation

- Layer 2 in the OSI model
- FlexRay functions
 - Communication
 - Synchronisation
- Implementation of a model of an oscillator
- Configuration of the network structure and the parameters
- System level error detection

- FlexRay-Simulation in OMNeT++
 - S. Buschmann
- ntroduction
- Background & Requirements
- Concept
- Results & Evaluation
- Conclusion & Outlook

3 Concept

Introduction

4 Results & Evaluation

Background & Requirements

FlexRay-Simulation in OMNeT++

S. Buschmann

Introduction

Background & Requirements

Concept

Results & Evaluation

ConceptNode

S. Buschmann

Introductio

Background & Requirements

Concept

Results & Evaluation

Conclusion & Outlook

- Several submodules
- Connection to the bus module

frApp

frPort

Independent configuration

Concept Topology

- OMNeT++ only provides point to point communication
- Bus topology
- Realised as module
- Provides a maximum of two connections for each node
- Distribution of incoming messages

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

Concept

Results & Evaluation

- Very accurate model would simulate every tick
 - Huge amount of events
- Our approach for the clock drift
 - Only one drift value per cycle
 - Reducing the number of events

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

Concept

Results & Evaluation

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

Concept

Results & Evaluation

Conclusion & Outlook

4 Results & Evaluation

Background & Requirements

Introduction

Concept

Protocol conformance & error detection

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

Concep

Results & Evaluation

Conclusion & Outlook

Protocol conformance:

■ Requirements are fulfilled

Typical error detection:

- Configuration problems
 - Too many sync nodes
 - Frames in the same slot
- Timing errors
 - Frames in wrong slot

Latency Analysis for the dyn. segment Simulation parameter

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

Concept

Results & Evaluation

Conclusion & Outlook

4 nodes

■ 10 minislots

Transmission points distributed over dynamic segment

■ Dynamic frames require 1 to 3 minislots

dynamic segment

1 2 3 4

minislot ID 11 12 13 14 15 16 17 18 19 20

Latency Analysis for the dyn. segment

Latency of frames with different IDs

S. Buschmann

Introduction

Background & Requirements

Concept

Results & Evaluation

Latency Analysis for the dyn. segment Latency distribution

FlexRay-Simulation in OMNeT++

S. Buschmann

Introduction

Background & Requirements

Concept

Results & Evaluation

Performance test

- Several networks of various size
- Only messages in the static segment
- Further parameters identical

number of nodes	channels	t_sim/t_real [s]
10	single	~0.96
20	single	\sim 0.58
30	single	\sim 0.45
10	dual	\sim 0.62
20	dual	\sim 0.32

- Nearly worst case scenario
- Timing parameter and configuration have a large influence

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

Concept

Results & Evaluation

Evaluation against CANoe

Comparison of latency results

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

Concep

Results & Evaluation

- CANoe
 - Commercial network simulator
 - Variety of automobile communication protocols
- Two equal networks
 - Three nodes
 - Same parameters
- Same behaviour in both networks
 - Amount and timing of messages
 - Repressed dynamic frames
- Difference of approximatly 100 ns

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

Concept

Results & Evaluation

Conclusion & Outlook

1 Introduction

2 Background & Requirements

3 Concept

4 Results & Evaluation

Conclusion

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

oncep

Results & Evaluation

- System level simulation
- Support of different applications
- Evaluation against CANoe
- Can be used for simulation of complete communication-matrices

Outlook

FlexRay-Simulation in OMNeT++

S. Buschmann

ntroduction

Background & Requirements

Concep

Results & Evaluation

- Extension of the simulation
 - Active star topology
 - Startup procedure and node integration during operation
- Gateway between FlexRay and other communication models
- Simulation of complex real communication-matrices

Thank you!

Thank you for your attention!

Website of CoRE research group: http://www.haw-hamburg.de/core

 $\begin{array}{c} {\sf FlexRay\text{-}Simulation\ in}\\ {\sf OMNeT\text{+}+} \end{array}$

S. Buschmann

ntroduction

Background & Requirements

oncept

Results & Evaluation

