
A Middleware Solution for Open and Dynamic ICT
Architectures in Future Cars

Timo Häckel
Hamburg University of Applied Sciences, Dept. Computer Science,

Berliner Tor 7
20099 Hamburg, Germany

Email: timo.haeckel@haw-hamburg.de

Abstract—The Information and Communication Technology
(ICT) of today’s vehicles is currently experiencing a major
revision. With the introduction of a centralised communication
medium and the Service-Oriented-Architecture (SOA) paradigm,
the automotive industry adopts the challenges posed by connected
cars and autonomous driving.

In novel SOA based ICT architectures the communication
middleware for services plays an important role, as it enables
services to exchange messages. This paper names the key aspects
of such a middleware and specifies our solution. We design a
Service-Oriented Architecture based middleware that supports
Quality-of-Service (QoS) policies to define the requirements on a
connection. Finally, we describe our realisation in the simulation
environment OMNeT++.

I. INTRODUCTION

Information and Communication Technology (ICT) is al-
ready a major driver in the automotive industry. Thus, high
quality software components are essential for the competi-
tiveness in the automotive market. Already in 2007 M. Broy
determined that ICT contributes up to 50% to the total value
of a car and nearly 80% of innovations in the automotive
sector were a direct product of the technology transfer from
the domain of computer systems [1]. With the recent deve-
lopment and advances in autonomous driving the car becomes
more and more software dependent and has evolved into a
communication hungry system.

With the increasing number and complexity of software
components (see figure 1), the demand on processing power
and data rate increases. At the same time, the integration effort
for new components increases as well, as the interactions of
components become harder to predict [2].

Over the last decades the ICT in modern vehicles has
developed in an evolutionary way. As support for legacy
systems has a pivotal role in the automotive domain, well
tested and proven components continued to be used in the
next generation of cars [3]. Now, features like drive assistance
and autonomous driving as well as new technologies pose
new demands on the ICT in modern cars. For example: Dy-
namically add and find components in the network; Opening
the vehicular communication to the Internet; And a much
higher bandwidth for communication. These needs cannot be
fulfilled by the current ICT architecture, without increasing the
complexity and creating security issues [2]. Thus, they lead
to the introduction of new ICT architectures. To address the

Fig. 1. Evolution of complexity in automotive ICT architectures. [2]

issue of legacy systems, the ICT architecture must be revised
so far-sightedly, that they can perform their indispensable role
in future cars [2].

To solve the problems of today’s ICT architecture, industry
and research approaches contain the following key aspects:

• The introduction of a centralized communication medium
with high bandwidth.

• The introduction of dynamic software components with
the Service-Oriented Architecture (SOA) paradigm.

This paper aims to describe our middleware solution for
open and dynamic ICT architectures in future cars, in method-
ology, design and realisation.

Therefore, we reflect the most important revisions for a
novel ICT architecture by providing some background knowl-
edge about the state of the art in industry and research
(section II). We name the challenges for the current ICT
architecture and the required transformation. Section III de-
scribes the requirements for an automotive middleware solu-
tion by analysing domain specific communication character-
istics. Based on these requirements, we design features and
components, as well as describe used technologies, paradigms
and the protocol stack of our middleware solution (section
IV). Afterwards, section V describes the realisation process in
the simulation environment of OMNeT++. Finally, section VI
concludes the paper and gives an overview on future research.

http://www.haw-hamburg.de/ti-i
mailto:timo.haeckel@haw-hamburg.de


II. BACKGROUND & RELATED WORK

This section presents related work and background knowl-
edge regarding novel ICT architectures in future cars.

A. Today’s and Future ICT Architecture

As previously stated, the ICT Architecture of today’s cars
was developed in an evolutionary way. Based on the study [4]
conducted in Germany in 2011, the authors of [2] discuss the
problems in today’s ICT architecture and the challenges of a
future ICT architecture.

They depict the following problems as crucial regarding
today’s architecture: Hardware overhead in ECUs due to
different manufacturers leads to a waste in resources of
micro controllers and networks; Heterogeneous networks with
different demands (e.g. time-triggered, priority based, etc.);
Increasing demand for interconnectivity and bandwidth, due
to functions using data-fusion approaches to generate the
state of the environment; Complex system verification, due
to heterogeneous networks and black-box ECU’s; And limited
flexibility due to static vehicle configurations.

As figure 1 shows, there is an evident trend for archi-
tectures to become more complex than required, considering
the evolutionary development of vehicle architectures and the
complexity growth over time. According to the previously
mentioned study [2], only a revision of the architecture and
the use of new technology can bring the complexity down.
This could results in much smaller integration costs and an
increasing innovation curve. This process has already been
observed in the past. For example in 90’s the rise of complexity
lead to the introduction of micro controllers and new bus
systems like CAN-Bus.

For future ICT architectures the authors of [2] name the
following key concepts to be implemented, some of them
already in use in recent cars. On the one hand side, they
depict a list of hardware concepts, such as: A centralised
computer architecuter with scalable computing units; The use
of smart sensor and actor components; And a standardised
communication backbone to replace the heterogeneous net-
works. On the other hand side, they describe concepts for the
software platform used in a novel ICT architecture, such as: A
data-centric approach; Meta-data support for extra-functional
properties (e.g. timings or fault tolerance); And Plug&Play
capabilities for hardware and software components added after
sale. The main concept they suggest based on the results of
the study is a Service-Oriented communication approach for
software components.

Connected vehicles are another big research field in the
automotive domain. Already, cars connected to the Internet and
exchanging data with smartphones is state of the art. Future
cars will be connected to almost everything: Smart homes,
Cloud Services, roadside infrastructure and other vehicles
around them [5]. As a conclusion cars become part of the
Internet of Things (IoT). Thus they function as driving sensor
nodes providing data to the Internet [6]. On the other hand they
will consume services, e.g. roadside infrastructure. To enable
these communications with external devices, the introduction

of Web Service standards to the car is another key feature of
novel ICT Architectures.

B. Centralised Communication Medium

The most important foundation for a novel ICT architecture
is a centralised and open communication medium [3]. It needs
to resolve the previously mentioned issues of heterogeneous
networks, hardware overhead, increasing demand for intercon-
nectivity and bandwidth, as well as supporting the connection
to the IoT.

One technology which is expected to replace all of the
currently used In-Car networks is Ethernet. The advantages of
ethernet are it’s high bandwidth, the vast distribution, low mass
production cost and it’s wide standardisation. To deploy such
a technology to the car there are some important features to
be added: Reliability and safeguarding against failure; Security
features to ensure robustness against attackers; And Real-Time
capabilities.

Many variants of Automotive Ethernet are developed in
different research groups all over the world. One example
is a prototype developed at the CORE research group1 [7]
using a switched Real-Time Ethernet backbone. Although
there are still some problems regarding Real-Time Ethernet
(e.g. background cross-traffic bursts [8]), it is expected to be
the main in-car communication medium of the future.

To create a standard for Real-Time capable Ethernet solu-
tions, the IEEE founded the Time-Sensitive Networking Task
Group to combine and refine already existing standards as
well as create new ones ‘to provide deterministic services
through IEEE 802 networks, i.e., guaranteed packet transport
with bounded latency, low packet delay variation, and low
packet loss’ [9].

C. Service-Oriented Architecture

The Service-Oriented-Architecture Paradigm is a well
known and widely used software design method to separate
components of a system into services which interact over
a network. One or more services support or automate a
business function and are realized with software and hard-
ware [10]. Although SOA originated from web technologies
and has many different implementations, it is not about the
implementation but the design paradigm. The key aspects
of a SOA, reusability and decoupled components, make it
a fitting paradigm for the automotive software development.
SOA based ICT architectures generally have the advantage of
a low level of complexity and integration effort, as well as the
ability to dynamically add and find components in the network,
which leeds to a high flexibility and can reduce the number
of ECU’s as services are no longer bound to there location in
the network.

Enabled by the use of a centralised communication medium
(see II-B), it is now possible to introduce SOA to the car.
Already, the main organization for standardisation of the
automotive industry, AUTOSAR adopted the challenge and

1CORE research group at the Hamburg University of Applied Science, more
information at https://core.informatik.haw-hamburg.de

https://core.informatik.haw-hamburg.de


successfully introduced SOA to there platform standards [11].
Over the past decade AUTOSAR has been established as
the organization and main driver for the standardisation of
software platforms in the automotive industry. As a reaction on
upcoming demands and new functionalities, they restructured
their portfolio [12]. Besides enhancing the AUTOSAR Classic
Platform with Ethernet support and Service-Oriented commu-
nication, they recently introduced the AUTOSAR Adaptive
Platform [5]. Although this is a first step towards centralised
SOA based communications, AUTOSAR’s approach is still
very conservative as they only use Service-Orientation and
Ethernet for software components without hard Real-Time and
security requirements.

D. Service-Oriented Middleware

To enable applications to communicate with each other
with the SOA paradigm, a Service-Oreciented communication
middleware is needed. Obviously there are already hundreds of
middleware solutions out there each with its own application.
But as most of the times the requirements of the automotive
domain are a bit different and are not fulfilled appropriately by
the existing middlewares [13]. As we want to design a fitting
middleware for the automotive communication, we looked
at middleware solutions contributing something new for our
project.

With the previously mentioned changes to the AUTOSAR
Platform they introduced SOME/IP [13], a Service-Oriented
communication middleware which enables TCP-/UDP-IP
based service communication. SOME/IP successfully intro-
duces SOA to the car and newly-creates IP-based services,
but this solution is not real-time capable.

In the industrial automation big sensor and actor networks
communicate in real-time. Thus, the research in industrial
automation is a nice inspiration for the car. With the Internet of
things they introduced service based communication with an
open infrastructure for web services [14]. As a base concept
they introduced the service classes Web Services and Real-
Time Services and a QoS based protocol stack which we will
try to apply to the car.

Another well structured middleware are Data Distribu-
tion services (DDS) [15] designed by the Object Manage-
ment Group. They support service endpoints for the pub-
lish/subscribe mechanism based on quality of service parame-
ters, which is also a fitting concept for in-car communication.
The purpose of the DDS specification can be summarized
as enabling the ‘Efficient and Robust Delivery of the Right
Information to the Right Place at the Right Time’. By their
definition QoS (Quality of Service) is a general concept that
is used to specify the behavior of a service. Programming
service behavior by means of QoS settings offers the advantage
that the application developer only indicates ‘what’ is wanted
rather than ‘how’ this QoS should be achieved. Generally
speaking, QoS is comprised of several QoS policies. Each
QoS policy is then an independent description that associates
a name with a value. Describing QoS by means of a list
of independent QoS policies gives rise to more flexibility.

DDS provide a very fitting communication pattern and a well
structured architecture.

All these solutions provide fitting communication patterns,
concepts for QoS based communication and a well structured
architecture. But they do not allow the usage of a different
protocol stack which is eminent for the heterogeneous require-
ments of in-car communication.

III. METHODOLOGY

As modern cars incorporate software components from
very different domains, automotive software has very het-
erogeneous requirements on communication. On the one
hand side, Multimedia, Passenger/Comfort, Safety Electron-
ics, Engine/Drive-train or Diagnostic components have very
different definitions of important communication requirements
such as Real-Time or Data Complexity. On the other hand
side, they rely on different communication patterns. Thus,
a centralised and open communication middleware needs to
fulfil the requirements of all automotive software domains. Our
approach is designed to enable the following key concepts of
communication:

A. Service Orientation
The communication in Service-Oriented Architectures in-

volves three important building blocks:
1) Service Provider, creates a service and provides its

information to the service registry.
2) Service Registry, makes services available for potential

consumers.
3) Service Consumer, locates a service provider in the

service registry and invokes one of its services.
The middleware has to provide functionality to create service
providers and consumers, as well as provide a service registry
to find services in the network.

B. Protocol Abstraction
Services should not need to know anything about underlying

protocols and technologies. The middleware has to provide a
protocol abstraction threw meta data attached to the service
consumers and providers (section III-D).

C. Communication Patterns
Due to the heterogeneous domain specific requirements of

automotive software, the middleware has to enable different
communication patterns:

1) Publish/Subscribe, to replace broadcast based bus sys-
tems and dynamically demand updates on certain infor-
mation. A publishing service provides an interface to
register new subscribing services and delivers informa-
tion to all subscribed services.

2) Streams, to enable sequential delivery of data elements
over time (Multimedia).

3) Messages, to enable components to deliver information
as a message asynchronously to a service in the network.

4) Remote Procedure Calls (RPC), allow a service to
remotely execute a subroutine of a different service in
the network.



D. Quality-of-Service Policies

Quality-of-Service (QoS) policies add meta data to the
connection between services and enable services to specify
certain properties of the communication. Important policies are
e.g.: Throughput, transmission delay, availability, jitter. The
middleware needs to provide meta data support threw QoS
policies to enable the application to choose which qualities of
the connection need to be fulfilled. Besides, the middleware
needs to monitor if all policies are maintained.

E. Openness

As the car opens up to the IoT, the middleware needs to
provide state of the art Internet technologies such as support
for the Hypertext Transfer Protocol (HTTP) and REpresen-
tational State Transfer (REST) Web Services. It is important
that services do not need to know whether a corresponding
service is located in- or outside of the vehicle.

F. Lightweight

To support small ECU’s and legacy systems, it’s important
for the middleware to be lightweight and keep a low level of
complexity.

IV. DESIGN

As previously argued in section II-D, there are no suitable
middleware solutions for the heterogeneous requirements of
automotive communication. Therefore, we designed a middle-
ware solution using the key concept mentioned above.

During the design process we focused on four key concepts:
Service orientation, openness, protocol abstraction and QoS
policies for connections.

Allthough it is important to have a migration and deploy-
ment strategy for novel ICT Architectures as described in [3],
we do not focus on the lightweights and legacy support, as
the goal of this proof of concept is to show how different
communication requirements can be combined in one uniform
middleware solution. Likewise we do not focus on security
aspects, although we recognize the danger in centralising the
internal vehicular communication. We believe that security
concepts, e.g. encryption and encapsulation, can be added
comparable to existing Internet standards.

The following sections will describe the choices we made
during the design of our middleware solution regarding: The
protocol stack to support web services, IP-based communica-
tion and real-time communication; The QoS negotiation pro-
cess to decide e.g. which protocol to use; Endpoint design for
specific communication patterns; And the component design
to realise the functionality.

A. Service Classes

The heterogeneous communication requirements of auto-
motive services make it hard to find one unified catalogue
of requirements. Therefore, we decided to split them into
different categories, which all group services sharing the same
profile.

We extracted three different categories of services from the
wide range of automotive applications.

1) Real-Time Services (RTS): Real-Time timing guarantees,
usually small amounts of data in a fairly high frequency.

2) Standard IP-based Services (STDS): openness, No hard
deadlines, varying amounts of data with varying fre-
quency, low serialisation overhead to support small
ECUs.

3) Web Services (WS): Web Service Standard support leads
to openness, varying amounts of data with varying
frequency not knowing where the responding service is
located

B. Protocol Stack

The two key features of our middleware solution are the
protocol abstraction and the QoS based decision on communi-
cation policies. Both of them highly depend on the underlying
protocol stack. Based on the layered architecture of the OSI-
model we designed our protocol layers to be easily replaceable
and reusable.

Fig. 2. Middleware protocol stack according to the OSI reference model.

As described in the middleware discussion (section II-D),
there are some projects trying to revision communication in
industrial automation. One of them designed a protocol stack
with different services classes working on different protocols
(see [14]). Based on this approach we paired each service
classes (section IV-A) with a unique and fitting protocol stack
for the layers one to four/five where the middleware is the
top level of protocol abstraction with a generalised application
interface. This stack is shown in figure 2 and will be described
below from bottom up.

The basis for all layers is the physical layer which uses
Automotive Ethernet (source) technology and defines the elec-
trical and physical data transmission details. As Automotive
Ethernet is optimized for the automotive environment it is the
obvious choice.

At the second/data link layer Time Sensitive Networking
(TSN) Standard [9] is used, to realise Real-Time communi-
cation over Ethernet. This layer is responsible for the node-
to-node transfer and the flow control. Thus, it is irreplaceable



for Real-Time communication, as only this layer can provide
timing guarantees and priority based packet delivery.

On layer three, four and five in the OSI-Model each service
class uses a specialised protocol stack by combining well-
established protocols.

• RTS: Use TSN components for all layers as it provides
its own routing and transport mechanism. If TSN can
provide the timing guarantee the middleware can provide
this guarantee as well.

• STDS: To realise basic IP-based services with a low
communication overhead, we decided to use the well-
established protocols TCP/UDP over IP. This way we
can provide openness for STD services as well as use
lightweight protocols. On the second layer this commu-
nication will be handled as Best-Effort traffic.

• WS: For WS it is important to use well-established and
widely used standards. The current way to go for Web
Services are ReST based Service interfaces using HTTP
connections. Therefore, we decided to follow this route
and use a HTTP - TCP - IP stack. On the second layer
this communication will be handled as Best-Effort traffic.

C. Basic Middleware Architecture

The middleware is realised in four main modules: Local
Service Manager (LSM), Local Service Registry (LSR), Ser-
vice Endpoint Factory (SEF), QoS Manager (QoSM). Figure 3
illustrates the relationship between these modules.

The LSM is the entry point of the middleware and contains
the main Application Programming Interface (API). It holds
a reference to all service instances running on the local
machine and applications can create and consume services
with attached QoS policies. To separate the concerns it consists
of three sub modules, each implementing one important part
of the API.

To enable service oriented communication middleware
clients need to be able to find running services in the network.
The LSR provides a local instance of a service registry,
by implementing the Registry Pattern [16, p. 480]. It holds
information to all known services. Furthermore, it provides
service discovery functionality to find unknown services in
the local network via broadcast.

The SEF uses the Factory Pattern [17, p. 107] to provide
factory methods for the different endpoints for each com-
munication pattern (more detailed description in upcoming
section IV-E). According to a parameter for a QoS Policy
list, the factory decides which endpoint type it creates, e.g.
a Real-Time capable subscriber.

The QoSM manages the QoS negotiation between the
consumer and the provider. A more detailed description can
be found in the upcoming section IV-D.

D. QoS Negotiation

As there are already many QoS based middleware ap-
proaches, we combined the solution of two projects. In [18],
Menascé et al. describe an architecture that includes a QoS
broker and service provider software components. In addition

Local Service 
Manager

Service Endpoint 
Factory

Local Service Registry QoS Manager

Fig. 3. Basic middleware architecture module overview.

they specify a QoS negotiation protocol with the support of
a QoS broker. In the second project [19], Abdelzaher et al.
describe their QoS based middleware approach to Real-Time
Systems RTPOOL and check its application to automated flight
control.

Figure 4 and 5 describe the QoS negotiation set-up at
consumer and provider side. At first the service must be
created. Therefore, the service provider creates the service X
at the LSM, which creates an entry in the LSR. To connect
to this service, the consumer issues a QoSReguest for service
X at the LSM, which tries to find it at the LSR. If the LSR
doesn’t contain an entry for service X, service discovery will
try to find it. If it can’t be found, the consumer will be notified
that the service doesn’t exist, otherwise the QoS negotiation
will be started by the QoSM which creates a broker for the
clients request. When the request arrives at the machine of the
service provider, the QoSM checks if the requested service X
exists on this machine. If it doesn’t the request will be dropped,
otherwise a QoS Broker will be created to handle the request
and ongoing negotiation. Both brokers now negotiate the terms
of connection via a QoS negotiation Protocol.

Local Service 
Registry

Client

Local Service Manager

QoS Manager

QoS Broker

1. issue QoSRequest for Service X

2. find Service X in Registry3. return information 
about Service X

4.1. if no information found, abort and
report that the service was not found.

4.2. start QoS Negotiation 
between the clients QoS Policies 

and the Service Provider

5. create a QoS Broker for the task

6. Start Negotiation

Fig. 4. QoS negotiation set-up at consumer side.

Figure 6 and 7 show the state machines that are imple-
mented by the consumer and provider side QoS Brokers
to enable the negotiation via the QoS negotiation Protocol.
This Protocol contains a handshake to check if the service
is reachable and is generally able to fulfil the requested QoS
policies. In the second stage the connection details will be



Local Service 
Registry

Service 
Provider

Local Service Manager

QoS Manager

QoS Broker

1. create Service X

2.2 create entry for Service X3. acknowledge

2.1. If there are not enogh ressources 
to create the service report an error.

4. recieved QoSRequest
for Service X

5. Check if Service X exists 
on this machine.

6.1. drop 
invalid Request

6.2. create QoS Broker
to handle Negotiation

7. Respond to
negotioation

Fig. 5. QoS negotiation set-up at provider side.

exchanged if both brokers agree on the terms of connection.

Re-Negotiate 
/ Create adjusted QoSRequest

Request Created 
/ Send QoSRequest

Pending Request

Entry / Create Timer
Exit / Delete Timer

Pending Request

Entry / Create Timer
Exit / Delete Timer

Negotiation Failed

Timeout 
/ return NegotiationTimeout

Received QoSResponse_Reject 
/ return RequestRejected

Received QoSResponse_Accept 
/ Evaluate Contract

Evaluating ContractEvaluating Contract

Request Service / Create QoSRequest

Creating RequestCreating Request

Accept 
/ Send ConnectionRequest

Pending Connection

Entry / Create Timer
Exit / Delete Timer

Pending Connection

Entry / Create Timer
Exit / Delete Timer

Connection Failed

Timeout 
/ return ConnectionTimeout

Recieved ConnectionError 
/ return ConnectionError

Negotiation Successful

Received ConnectionResponse 
/ return ConnectionDetails

Fig. 6. Statemachine for the QoS Broker at consumer side.

No SessionNo Session

Received QoSRequest 
/ Evaluate Request

Evaluating RequestEvaluating Request

Pending Response

Entry / Create Timer
Exit / Delete Timer

Pending Response

Entry / Create Timer
Exit / Delete Timer

Acceptable
/ Send QoSResponse_Accept

Received ConnectionRequest
/ check Connection

Checking ConnectionChecking Connection

Received QoSRequest 
/ Evaluate Request

Timeout / Abort Connection

Unacceptable 
/ Send QoSResponse_Reject

Connection Successful 
/ send ConnectionResponse

Session EstablishedSession Established
Session Canceld

Connection Failure 
/ send ConnectionError

Fig. 7. Statemachine for the QoS Broker at provider side.

E. Endpoints

The middleware provides endpoints for the different com-
munication patterns described in section III-C. As a reference

we used the QoS based publish/subscribe middleware Data
Distribution Services (DDS) [15] (described in section II-D)
which delivers data to each subscribed service. We modified
the structure to not only allow QoS policies to specify how the
data is exchanged, but also manipulate the underlying protocol
that is used.

Each endpoint type specifies a base class with the general
interface and basic implementations. This base class is im-
plemented by the three subclasses, one for each service class
(see section IV-A). They provide adaptations that are generally
needed for RTS, WS or STDS as well as the possibility to iden-
tify the type of endpoint for prioritisation. In addition, these
three service classes again have subclasses, which implement
the concrete protocol specific way of communication.

To provide a better understanding of the concept, lets give
an example of the publish/subscribe mechanism. To realise
this mechanism we need two base classes for the endpoints:
IPublisher and ISubscriber. They describe the interface for
all interactions with the subclasses, as the service should
not know which specific protocol is used. On the next layer
both interfaces have three different implementations, one for
each service class: IRTSPublisher, IWSPublisher and ISTD-
SPublisher. These classes implement the general behavior of
publishers in there service class and allow the LSM to identify
the publishers service class. As these classes do not provide
a concrete implementation for the registration of subscribers
and the message delivery, we need another layer of subclasses
for the specific protocol we want to use (e.g. TSN for RTS).
This way we provide an easy way to add implementations for
other protocols.

When an endpoint is created, the service specifies the
QoS policies and the LSM chooses which endpoint type and
concrete implementation are the best fitting.

V. REALISATION

The middleware is implemented as a C++ library, as C is
the preferred programming language in automotive embedded
services. For the realisation and examination we had two
different options:

• Demonstrator, an experimental set-up of in-car com-
munications of different micro controller applications
connected over RT-Ethernet.

• OMNeT++ Simulation, an environment to simulate the
communication behaviour of many different nodes in a
network over a simulated medium.

We decided to go with the simulation for the following
reasons:

• Low level of complexity to start with a prototypical
implementation for a proof of concept.

• Flexible creation of different models and scenarios to
compare.

• There are existing libraries for all network protocols we
want to use.

• Support for debugging and surveillance tools that can
analyse the message flow.



As a simulation environment we use OMNeT++2 (Version
5.1.1) in combination with the INET-Framework3 (Version 3.5)
and the CoRE4INET-Framework4 (Version nightly/2017-05-
31-00-00-06).

VI. CONCLUSION

This paper has provided an overview on the changes and
paradigms hitting on the automotive domain. On the other
hand side, we gave an overview on existing middleware
solutions and presented our own approach on an automotive
service-oriented QoS based middleware.

The presented middleware solution fulfils the specific re-
quirements of the automotive domain by providing different
QoS policies for the very heterogeneous communication re-
quirements.

A. Results

As a result we can say that the QoS based approach lives
up to the expectations. It allows applications to specify there
communication requirements and to choose the QoS they need.
On the other hand we noticed that the description of QoS
needs to be abstracted from the underlying protocols. In the
current state the QoS policies are closely interconnected to the
protocol parameters which is suboptimal.

B. Future Research

One important part is refining the QoS policies as described
above. In addition, we have not yet implemented a mechanism
for the surveillance of QoS policies. Besides the middleware
needs to be field tested on a hardware prototype which is
the next step. Furthermore, after testing and evaluation of
functionality, the security aspects will come to focus. When
opening a previously encapsulated system to the Internet of
Things it is important to do this safely and to secure the
automotive network against a great many of attacks.

REFERENCES

[1] M. Broy, I. H. Kruger, A. Pretschner, and C. Salzmann, “Engineering
automotive software,” Proceedings of the IEEE, vol. 95, no. 2, pp. 356–
373, Feb 2007.

[2] C. Buckl, A. Camek, G. Kainz, C. Simon, L. Mercep, H. Stähle, and
A. Knoll, “The software car: Building ict architectures for future electric
vehicles,” in 2012 IEEE International Electric Vehicle Conference,
March 2012, pp. 1–8.

[3] H. Stähle, L. Mercep, A. Knoll, and G. Spiegelberg, “Towards the de-
ployment of a centralized ict architecture in the automotive domain,” in
2013 2nd Mediterranean Conference on Embedded Computing (MECO),
June 2013, pp. 66–69.

[4] “The software car: Information and communication technology (ict)
as an engine for the electromobility of the future,” ForTISS GmbH,
Tech. Rep., mar 2011, summary of results of the ”eCar ICT System
Architecture for Electromobility” research project sponsored by the
Federal Ministry of Economics and Technology.

2OMNeT++ is a simulation environment for network communication. More
information at https://omnetpp.org/

3The INET Framework for OMNeT++ adds support for the most common
protocols in the internet. More information at https://inet.omnetpp.org/

4The CoRE4INET Framework builds on to the INET Framework and adds
support for simulation models for real-time networks. More information at
http://core4inet.core-rg.de/trac/

[5] S. Fürst and M. Bechter, “Autosar for connected and autonomous ve-
hicles: The autosar adaptive platform,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Work-
shop (DSN-W), June 2016, pp. 215–217.

[6] S. K. Datta, R. P. F. D. Costa, J. Härri, and C. Bonnet, “Integrating
connected vehicles in internet of things ecosystems: Challenges and
solutions,” in 2016 IEEE 17th International Symposium on A World
of Wireless, Mobile and Multimedia Networks (WoWMoM), June 2016,
pp. 1–6.

[7] T. Steinbach, K. Müller, F. Korf, and R. Röllig, “Real-time Ethernet In-
Car Backbones: First Insights into an Automotive Prototype,” in 2014
IEEE Vehicular Networking Conference (VNC). Piscataway, NJ, USA:
IEEE Press, Dec. 2014, pp. 137–138.

[8] T. Steinbach, H.-T. Lim, F. Korf, T. C. Schmidt, D. Herrscher, and
A. Wolisz, “Beware of the Hidden! How Cross-traffic Affects Quality
Assurances of Competing Real-time Ethernet Standards for In-Car Com-
munication,” in 2015 IEEE Conference on Local Computer Networks
(LCN), oct 2015, pp. 1–9, lCN Best Paper Award.

[9] IEEE802.1WorkingGroup. (2018, feb) Time-sensitive networking (tsn).
[Online]. Available: https://1.ieee802.org/tsn/

[10] D. K. Barry and D. Dick, Web services, service-oriented architectures,
and cloud computing: the savvy manager’s guide, second edition ed., ser.
The Savvy manager’s guides. San Francisco, Calif. : Oxford: Morgan
Kaufmann ; Elsevier Science [distributor], 2013.

[11] G. L. Gopu, K. V. Kavitha, and J. Joy, “Service oriented architecture
based connectivity of automotive ecus,” in 2016 International Confer-
ence on Circuit, Power and Computing Technologies (ICCPCT), March
2016, pp. 1–4.

[12] AUTOSAR. (2017, mar) Adaptive platform : Autosar. [Online].
Available: https://www.autosar.org/standards/adaptive-platform/

[13] D. L. Völker, “Some/ip – die middleware für ethernetbasierte kom-
munikation,” HANSER automotive Networks/2013, pp. 17–19, 2013,
german.

[14] T. Cucinotta, A. Mancina, G. F. Anastasi, G. Lipari, L. Mangeruca,
R. Checcozzo, and F. Rusina, “A real-time service-oriented architecture
for industrial automation,” IEEE Transactions on Industrial Informatics,
vol. 5, no. 3, pp. 267–277, Aug 2009.

[15] Data Distribution Service, Online, Object Management Group Std.
DDSTM, Rev. 1.4, mar 2015, access: 2018-02-08. [Online]. Available:
http://www.omg.org/spec/DDS/1.4

[16] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[17] E. Gamma, Design patterns: elements of reusable object-oriented soft-
ware. Pearson Education India, 1995.

[18] D. Menascé, H. Ruan, and H. Gomaa, “Qos management in service-
oriented architectures,” vol. 64, pp. 646–663, 08 2007.

[19] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin, “Qos negotiation in
real-time systems and its application to automated flight control,” IEEE
Transactions on Computers, vol. 49, no. 11, pp. 1170–1183, Nov 2000.

https://omnetpp.org/
https://inet.omnetpp.org/
http://core4inet.core-rg.de/trac/
https://1.ieee802.org/tsn/
https://www.autosar.org/standards/adaptive-platform/
http://www.omg.org/spec/DDS/1.4

	Introduction
	Background & Related Work
	Today's and Future ICT Architecture
	Centralised Communication Medium
	Service-Oriented Architecture
	Service-Oriented Middleware

	Methodology
	Service Orientation
	Protocol Abstraction
	Communication Patterns
	Quality-of-Service Policies
	Openness
	Lightweight

	Design
	Service Classes
	Protocol Stack
	Basic Middleware Architecture
	QoS Negotiation
	Endpoints

	Realisation
	Conclusion
	Results
	Future Research

	References

