
Poster Abstract: A Hardware/Software Platform for
Real-time Ethernet Cluster Simulation in OMNeT++

Oleg Karfich, Florian Bartols, Till Steinbach, Franz Korf, Thomas C. Schmidt
HAW-Hamburg, Department Informatik

Berliner Tor 7, D-20099 Hamburg, Germany
{oleg.karfich, florian.bartols, till.steinbach, korf, schmidt}@informatik.haw-hamburg.de

ABSTRACT
Cluster simulation is a popular method for supporting sys-
tem integration in various distributed applications by sim-
ulating the environment of a subsystem under test. Par-
ticularly in real-time systems, the timing requirements of
transmission and reception must be fulfilled, which is not
easy to achieve. In this paper, we contribute a scheme for
cluster simulation of real-time Ethernet (RTEthernet) based
distributed systems. It relies on the discrete event-based
simulation framework OMNeT++, interconnected with an
ARM-based co-processor. Our approach allows coupling a
real-world RTEthernet subsystem with virtual components
running in the discrete simulation, that realise the required
behaviour for the subsystem. We have evaluated the perfor-
mance limits of our approach regarding latency and jitter,
when running the simulation on a Linux system with the
real-time Kernel patch. The results show that the timing
requirements for the cluster simulation of small RTEthernet
networks can be achieved.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications

General Terms
Measurement, Performance, Experimentation

Keywords
Real-time Ethernet, Cluster Simulation, OMNeT++

1. INTRODUCTION
While simulation is already established in the design and

reconfiguration phase of large distributed real-time systems,
it is equally useful during the integration and setup phase.
Usually, when a system is being integrated, parts of the net-
work cluster must be tested, while its environment is not
available in hardware. These cluster simulations generally
use real-time simulation platforms that are specifically de-
signed and require expensive hardware. They are specialised
for a specific use-case and are inflexible to adapt to varying
conditions. Further, such systems are designed for a dedi-
cated communication protocol and thus are not feasible for
design changes on the protocol itself.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2013 March 5th, Cannes, France.
Copyright 2013 ACM ...$10.00.

It was already shown that it is possible to inject Ethernet
frames seen on a real-world interface or send frames based
on simulation events while running the discrete event-based
simulation framework in real time [6]. For applications with
moderate timing requirements such a system can be used for
cluster simulation with reasonable effort. For the simulation
of real-time systems with a temporal precision in the range
of microseconds, this approach is not feasible.

In this paper we contribute a scheme for the cluster sim-
ulation of real-time Ethernet protocols that interconnects a
discrete event-based simulation for the virtual components
and a dedicated real-time system for the connection to the
subsystem or devices under test. The concept was imple-
mented for the OMNeT++ network simulation framework.
It uses a modified real-time event scheduler to meet the tim-
ing requirements. An ARM-based system-on-chip acts as a
co-processor for the time base and the real-time frame trans-
mission and reception. Further, the application of the Linux
RT patch [5] helps to achieve the necessary performance re-
garding the timeliness to simulate the protocol in real-time.
We demonstrate our approach by simulating a real-world
network with virtual components running the TTE4INET
RTEthernet simulation model [4]. Finally, we evaluated the
performance limits when running on off-the-shelf hardware.

The paper is organised as follows: Section 2 provides back-
ground on RTEthernet and gives preliminary and related
work. In Section 3 the concept and architecture of our ap-
proach is shown before we explain selected results of our
evaluation in Section 4. Finally, Section 5 concludes and
gives an outlook.

2. BACKGROUND & RELATED WORK
Several commercial solutions interconnect simulation and

real-world systems to achieve so called cluster or hardware-
in-the-loop (HiL) simulations.

2.1 Generic HiL and Cluster Simulation
Since cluster and HiL are closely related, a clear determi-

nation is hard to achieve. In advanced development stages,
the lines between those two types are often blurry, because
some features are used in both simulations.

Cluster Simulation: A cluster simulator is connected
to the system-under-test (SUT), which can be composed of
a single node or a network of nodes, via a communication
interface. It triggers the SUT only with regular data frames,
so it is only responsible for generating frames to be trans-
mitted by the simulated nodes. As a consequence, it is only
possible to verify the behaviour of a SUT on the abstract
data level. The comparison of the desired and actual be-

haviour has to be done by analysing the received frames.
Hardware-in-the-Loop Simulation: When the reac-

tion of the simulated nodes on the real environment of the
SUT shall be monitored, the simulator has to be connected
to the sensors and actuators of the SUT. The SUT is con-
nected to the HiL simulator via the communication interface
and an additional environment interface. This enables also
a verification of the actual technical behaviour but requires
high computation performance.

The two depicted approaches allow verifying the behaviour
of a SUT or a single participant inside a distributed real-time
system. But at the same time they require expensive high
performance hardware and real-time operating systems to
fulfil the requirements of a real-time simulation. In contrast
to the presented solutions, our approach is based on off-the-
shelf hardware and a flexible event-based simulation envi-
ronment. Our implementation can be used variably for dif-
ferent purposes, such as early network protocol analyses, or
prototype application implementations. On the other side,
the previously depicted (commercial) cluster and HiL simu-
lations are often limited to special use-cases, to be able to
meet the demanded timing requirements. Hence, they have
higher simulation performance and timing precision.

2.2 Real-time Ethernet and TTEthernet
The advent of more and more bandwidth demanding real-

time applications have paved the path for Ethernet-based
real-time protocols. The main challenge for real-time com-
munication over Ethernet is to reduce and limit latency and
jitter. Time-triggered systems achieve a very low jitter by
preventing frames from concurrently accessing the same line
card. They operate synchronised with a shared time-base.
According to a coordinated time division multiple access
schedule, each sender is allowed transmitting data only in
its offline assigned time slots.

Our cluster simulation approach relies on the TTE4INET
model [4] for OMNeT++ and a RTEthernet stack for mi-
crocontrollers [2], which are both implementations of the
TTEthernet protocol [3]. TTEthernet is able to transmit
time critical and best effort messages on the same physical
infrastructure and provides three different message classes.
Time-triggered (TT)-messages have the highest priority and
the strictest timing constraints. To allow critical event-
triggered messages, rate-constrained (RC)-messages have the
second highest priority. Rate-constrained transmission is
done in a bandwidth limiting manner. Best-effort (BE)-
messages conform to standard Ethernet, have the lowest pri-
ority and no guaranteed transmission. The required system
wide time base for time-triggered communication is accom-
plished by a fail-safe clock synchronisation protocol. The
timing requirements for nodes in a TTEthernet networks
rely on the synchronisation accuracy, which has to be in the
lower microseconds range.

To be able to connect the simulation to a physical RTEth-
ernet network, the simulation platform must provide com-
plete support of the used protocol. In our case, it is essential
that the platform has to be synchronised to the network, in
order to transmit TT-messages in the correct time slot. Oth-
erwise, they will be dealt as frames sent by a faulty device
and will be dropped by the network. Also the distinction
between critical and best-effort messages must be achieved,
since low priority messages are not allowed interfering with
high priority critical messages. In order to react predictably

Microcontroller

TUSchedu-
ler

Host PC

DPM
PCI

Generic
UIO Driver

Microcontroller
ISR

DPM
Communi-

cator
Simulation

Core 0 Core 1

Kernelspace
Userspace

MPI PCI Bus

IRQ-
Handler

IRQ-
handled

notify

DPM Ethernet
IRQ

Linux with RT-Patch

Figure 1: Cluster simulation concept with a host PC
and a dedicated system-on-chip connected via DPM

to received frames, the latency between the actual reception
of frames at hardware level and the simulation environment
has to be bounded.

2.3 OMNeT++ Related Work
During the development of a simulation model for the

Stream Control Transmission Protocol (SCTP), an exter-
nal network interface module was developed [6] that allows
communication from the simulation environment to real net-
works. To receive external messages, the packet capture li-
brary libpcab was used, which allows creating filters to cap-
ture messages. To send messages from the simulation to
physical nodes, raw IP sockets were used. In addition, the
simulation was synchronised with the real time by obtaining
the time of the next scheduled event. In contrast to this
approach, we are using dedicated hardware for the trans-
mission and reception of frames, since the accuracy of the
operating systems build-in scheduler is not sufficient.

Another approach was used for the simulation of smart
grid communication systems [1]. In order to avoid delays in
the transmission of messages to and from the simulation, a
new simulation kernel has been implemented that uses two
processes on distributed CPU cores. One process involves
the simulation with the event scheduling. The second pro-
cess is responsible for the communication with the external
systems. The communication between these processes is re-
alised with the standard Message Passing Interface (MPI).
The application of MPI enables to transfer critical simula-
tion sections to dedicated cores. This allows a better perfor-
mance and at the same time a higher precision, which makes
it very attractive for our scheme.

In contrast to these approaches, our concept is forced to
reliably provide real-time capabilities, since a delayed frame
transmission results in incorrect behaviour of the SUT and
the simulation.

3. CONCEPT & ARCHITECTURE
Cluster simulation of RTEthernet protocols requires high

temporal precision regarding the transmission and reception
of critical messages. Therefore, an accurate knowledge of
latency and jitter of the simulation hardware is of great im-
portance.

3.1 Description of the Developed Platform
Our concept is based on the components shown in Fig.

1. Since OS-based RTEthernet stacks do not supply the re-
quired temporal precision in transmission, we are using an
implementation for an ARM9-based system-on-chip [2]. The

platform provides separate communication channels, which
are working independently of the ARM-CPU. This architec-
ture permits parallel processing of frames and applications.
In order to allow communication between both platforms,
the host is connected via virtual dual-port-memory (DPM)
to the microcontroller. Memory areas and registers of the
microcontroller can be mapped to the memory of the Linux
system. Handshake registers and an interrupt line control
the synchronous data exchange.

In our approach we use a Linux operating system with an
open source Userspace I/O framework to control the PCI-
based DPM device. This mainline Kernel module allows the
user to write a device driver running primarily in Userspace.
The only task to be implemented in Kernelspace is the han-
dling of interrupts. A small Kernel module containing a
minimal ISR is required, that acknowledges or disables the
interrupt and triggers the Userspace process. In general,
Linux is not suitable for real-time applications; therefor we
use the RT Kernel patch [5].

3.2 Overview on the Architecture
TimeStamping of Frames: For the classification of

messages in RTEthernet networks, precise information about
the reception of periodic time-triggered messages is required
to determine whether a frame was received in time. There-
fore, timestamps of received messages must be taken at the
earliest possible time, which is at the receiving hardware
unit. The microcontroller features a timestamping unit (see
TU in Fig. 1), which stamps all frames with a resolution of
10−8s and appends these time stamps to the frames.

Simulation with a Real-Time Scheduler: OMNeT++
provides three different schedulers that are responsible for
assigning events to the appropriate module at the scheduled
point in simulation time. The default scheduler is the cSe-
quentialScheduler. This scheduler selects the first element
in the event queue and then executes the associated routine.
Thus, simulation time continues without any relation to the
real time. The second scheduler is the cRealTimeScheduler,
which uses the system clock in wait calls to synchronise sim-
ulation time to real time. cSocketRTScheduler is the third
scheduler and extends the cRealTimeScheduler. It waits for
incoming messages from an external device during wait calls.
As all these schedulers handle the events sequentially, devi-
ations between the simulation time and the real time may
occur, depending on the computing time required for the
simulation. Furthermore, communication with external de-
vices, such as network interface cards, can result in addi-
tional delays since the scheduler has to wait, until the device
has finished its processing. To avoid these delays, the sim-
ulation and the communication module are distributed on
separate CPU cores to run in independent parallel processes
(see Simulation and DPM Communicator in Fig. 1).

Time-triggered Ethernet expects a synchronised time of
all components that receive and send time-triggered mes-
sages. Therefore, the scheduler of the simulation requires
a view on the synchronised hardware clock of the system-
on-chip to receive and send critical messages. The micro-
controller allows for mapping its time registers via DPM to
the hosts memory, which permits applying the synchronised
clock to the simulation time. We implemented a new cDpm-
RtScheduler that extends the cRealTimeScheduler such that
the simulation time will be synchronised to the real time of
the microcontroller.

Sending Real-World Frames via the External Mi-
crocontrollers Scheduler: The demanded temporal re-
quirements can not be fulfilled when utilising the Linux net-
work stack for Ethernet, because of its completely fair frame
processing. Therefor we are using the microcontrollers in-
ternal high-resolution scheduler for sending frames from the
simulation to the real-world network. This approach allows
us to schedule the transmission of messages to external re-
ceivers with a resolution of 10 ns [2]. If a message object is
addressed to an external node, it is first translated into a
network compliant message format and afterwards sent by
the MPI to the DPM Communicator process. This process
copies the message to the microcontrollers memory and then
triggers an ISR on the microcontroller with an interrupt.
The message is inserted in the scheduler of the microcon-
troller and is sent at the predefined point in time.

Reception of Real-World Frames in the Simula-
tion: Since frames in time-triggered Ethernet are prioritised
according to their message class, the forwarding of frames to
the simulation must be prioritised, too. We achieved these
priorities by assigning each type of frame a handshake reg-
ister on the microcontroller. Handshake registers are used
to realise the prioritised synchronous data transfer to the
host PC. When a frame is received at the microcontroller,
an interrupt is generated on the host and it is informed only
about the frame with the highest priority. This guarantees
that critical frames have always precedence.

The transfer of the frames through the DPM results in
a dynamic delay which must be added to the frames time
stamp to specify the correct receive time in the simulation.
Eq. 1 shows the calculation of the simulation receive time,

tSim = tFrame + tController + tHost (1)
where tSim is the corrected receive time of the frame in the
simulation and tFrame denotes the timestamp to the frame.
tController defines the delay of reception, copying the incom-
ing frame to the memory and triggering the host with an
interrupt. tHost identifies the transmission delay from the
microcontroller to the simulation.

Simulating with the RT Kernel Patch: The RT Ker-
nel patch allows assigning RT priorities for applications and
ISR-threads. In our approach it is used to prioritise the
simulation, the DPM Communicator module and the DPM-
ISR (see Microcontroller ISR in Fig. 1). These modules are
assigned with a higher priority than the rest of the hosts sys-
tem, to avoid preemption, which would result in additional
jitter. Further inaccuracies may be caused by the system
management module, when a system management interrupt
takes CPU time and all processes including the OS are pre-
empted. Thus, these functions have to be disabled.

4. EVALUATION & RESULTS
Our approach is evaluated in a test environment to de-

termine the temporal behaviour. It consists of one physical
node that periodically sends TT-messages and one virtual
component running the TTE4INET simulation model [4]
which receives these messages. As TT-messages have a fixed
configured time slot for transmission, the focus of our test
setup is based on the analysis of the latency and jitter.

Latency Measurement between Host and Micro-
controller: To analyse the latency of our approach, the
physical component generates 1000 TT-messages per Ether-
net frame size in the range between minimum (64 byte) and
maximum (1518 byte) frame sizes. The virtual component

0 2 5 0 5 0 0 7 5 0 1 0 0 0 1 2 5 0 1 5 0 0
2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

La

ten
cy

[µs
]

F r a m e s i z e [b y t e]
Figure 2: Latency with Standard Deviation from
Minimal Frame to Maximal Frame Size

records a timestamp for every received message in the sim-
ulation. The latency is calculated using the difference be-
tween this timestamp and the timestamp that was recorded
by the microcontroller. Fig. 2 shows that the cost of our ap-
proach is almost linear and has a calculated slope of 0.49 µs
per byte. The static part of the latency is measured with
186.4µs and has its origin in the processing of the messages
in the microcontroller, the interrupt processing in the Linux
Kernel and the bandwidth of the used DPM PCI-Card.

Jitter Analysis: The test setup for the jitter analysis
is similar to the previously presented latency measurement.
Here, the virtual component calculates the difference be-
tween the measured cycle times. The measurements show
that incoming TT-messages have a maximum jitter of 37 µs
in the simulation, which is caused by the host system. Fig. 3
depicts two distribution areas of the measured latency. The
first area exists around the target point of the cycle that
is the zero point and the second one is about 10 µs below
zero. The jitter has its origin in the best-effort behaviour of
the used off-the-shelf hardware. Thereby, more latency and
jitter sources are present such as the DMA bus mastering
which inserts wait cycles on the bus and causes latency and
jitter to the host.

Discussion of the Results: Currently we are using the
presented approach to develop and test RTEthernet nodes.
The latency and jitter performance is sufficient to obtain
reliable results. The simulation of applications that have
latency requirements in the range of 230 µs is feasible for
minimal sized frames. Furthermore, synchronisation proto-
cols such as used in TTEthernet [3] are able to compensate
the jitter to perform a successful synchronisation.

5. CONCLUSION & OUTLOOK
In this work, we showed a concept for cluster simulation of

RTEthernet systems. Our platform is based on a standard
PC with the RT-Linux Kernel running the RTEthernet mod-
els in the OMNeT++ simulation framework and an ARM9
microcontroller as a co-processor.

Our evaluation shows that the platform offers sufficient
performance for latency requirements of distributed real-
time systems in the range of 230 µs, which is limited and
has a linear dependency on the frame size. The observed
jitter is below 40 µs.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
- 3 0
- 2 0
- 1 0

0
1 0
2 0
3 0

Div
erg

en
ce

 fro
m

Cy
cle

 [µ
s]

C y c l e [#]
Figure 3: Distribution of Measuring Points During
the Jitter Measurement

To improve the latency performance and the real-time
characteristics, we plan to replace the ARM9-based system-
on-chip with a network card that has a dedicated hardware
timestamping unit and higher bandwidth. Additionally, we
are going to analyse how the simulation can benefit from
multicore parallelisation. To further reduce the jitter in the
simulation we are focusing on a deeper analysis of the used
RT-Kernel patch and its options as well as other real-time
patches for the host system.

Acknowledgments
This work is funded by the Federal Ministry of Education
and Research of Germany (BMBF) within the RECBAR
project.

6. REFERENCES
[1] J. Juárez, C. Rodŕıguez-Morcillo, and J. A.

Rodŕıguez-Mondéjar. Simulation of IEC 61850-based
substations under OMNeT++. In Proc. of the 5th Int.
ICST Conf. on Simulation Tools and Techniques, pages
319–326, New York, Mar. 2012. ACM-DL.

[2] K. Müller, T. Steinbach, F. Korf, and T. C. Schmidt. A
Real-time Ethernet Prototype Platform for Automotive
Applications. In 2011 IEEE Int. Conf. on Consumer
Electronics - Berlin (ICCE-Berlin), pages 221–225,
Piscataway, New Jersey, Sept. 2011. IEEE Press.

[3] SAE. Time-Triggered Ethernet AS6802. SAE
Aerospace, Nov. 2011.

[4] T. Steinbach, H. Dieumo Kenfack, F. Korf, and T. C.
Schmidt. An Extension of the OMNeT++ INET
Framework for Simulating Real-time Ethernet with
High Accuracy. In Proc. of the 4th Int. ICST Conf. on
Simulation Tools and Techniques, pages 375–382, New
York, Mar. 2011. ACM-DL.

[5] T. Ts’o, D. Hart, and J. Kacur. RT-Kernel Wiki, 2010.

[6] M. Tüxen, I. Rüngeler, and E. P. Rathgeb. Interface
Connecting the INET Simulation Framework with the
Real World. In Proc. of the 1st Int. Conf. on
Simulation Tools and Techniques for Communications,
Networks and Systems & Workshops, pages 40:1–40:6,
New York, Mar. 2008. ACM-DL.

	Introduction
	Background & Related Work
	Generic HiL and Cluster Simulation
	Real-time Ethernet and TTEthernet
	OMNeT++ Related Work

	Concept & Architecture
	Description of the Developed Platform
	Overview on the Architecture

	Evaluation & Results
	Conclusion & Outlook
	References

