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Abstract—As a result of advancements in bus technology and
the development of functionality related to autonomous driving
the connectivity of automotive vehicles and their components
inside the vehicular network is increasing. This naturally leads
to an expanding attack surface and creates the demand for
defense mechanisms like intrusion detection systems. An integral
task of an autonomous driving vehicle is the perception of the
environment, based on which the vehicle controlling functions act
according to a given situation. If an attacker is able to manipulate
the percieved environment of the vehicle in a controlled way
he would be able to prompt a calculated reaction of the
vehicles controlling functions. As machine perception systems
are designed to gather specific domain-dependant information,
the task of detecting anomalous behaviour of these systems is
also specific to their domain. Therefore it is necessary to create a
domain specific solution to detect attacks on these systems on the
application level. In this paper we present a concept for detecting
the manipulation of application data of LIDAR based perception
systems in an automotive context, and present evaluation results
of a prototype implementaion.

Index Terms—perception, automotive, LIDAR, anomaly
detection, intrusion detection, binary bayes filter

I. INTRODUCTION

The continouos development of driver assistance functions
and an increasing demand of autonomously operating vehicles,
as well as the required connectivity between vehicles and
their components, lead to new challenges in terms of keeping
the vehicles systems secure. The impact of attacks on cyber-
physical systems like passenger vehicles is substantial as they
may cause immediate physical harm to the people in the
systems vicinity. The threat of an attacker directly accessing
the vehicles controlling functions aiming to take control of
the vehicle has been proven to be real and has been addressed
in literature in various forms. Another way for an attacker
to influence the vehicles behaviour is the manipulation of
its percieved environment. If the attacker could manipulate
environmental information in a controlled manner he would
be able to prompt a calculated reaction of the components
which are driving the vehicles actors. A common use case of
machine perception in the automotive domain is to detect other
traffic participants, required for autonomous driving and driver
assistant functions like adaptive cruise control, lane change
prediction and emergency braking. Assuming a Man-in-the-
Middle scenario and the ability of an attacker to intercept
and manipulate network traffic, an attacker could modify

the location or speed of a detected object to trigger evasive
maneuvers or the emergency brake. In this paper we address
the problem of detecting these anomalies resulting from
malicious manipulation of the machine perception interface.
Based on a proposed system architecture for domain anomaly
detection in machine perception [1] and state of the art
anomaly detection mechanisms [2] the main goal of this paper
is to develop the concepts needed to adapt this methods and
the proposed architecture for the automotive domain focusing
on the use case of object detection. In Section II we present
related work and state of the art anomaly detection techniques.
Recently LIDAR (Light Detection and Ranging) sensors are
becoming the method of choice in the automotive industry
to serve as input for machine perception algorithms, as they
have higher resolution than RADAR sensors and are therefore
able to detect much smaller objects. In Section III-B we
examine the interface of such machine perception algorithms
used for object detection in the automotive domain, present the
possibilities of an attack, and formulate the problem statement.
In Section IV-A we present our concept of calculating the
probability of an anomalous prediction using a binary Bayes
filter also used in occupancy grid mapping [3] and discuss the
measurement model used for this approach. In Section V we
present results of the evaluation of a prototype implementation
and finally Section VI concludes the paper, presenting possible
ways to improve upon our solution and gives an overview on
future research.

II. RELATED WORK

A. Anomaly detection techniques

Anomaly detection techniques have been studied extensively
in literature and has been the topic in multiple surveys,
articles and books. While most existing surveys heavily
focus on a specific application domain or research area
Chandola et al published a report [4] providing a
structured and broad overview of the research on anomaly
detection techniques spanning multiple research areas and
application domains, including: Cyber-Intrusion Detection,
Fraud Detection, Medical Anomaly Detection, Industrial
Damage Detection, Image Processing, Textual Anomaly
Detection and Sensor Networks. Generally techniques can be
categorized into six different categories as shown in table I.



TABLE I
CATEGORIZATION OF ANOMALY DETECTION TECHNIQUES

Category Technique

Classification Based

Neural Networks Based
Bayesian Networks Based
Support Vector Machines Based
Rule Based

Clustering Based

K-means
DBSCAN
ROCK
SNN clustering
FindOut

Nearest Neighbor Based
distance to kTH Nearest Neighbor
Relative Density Nearest Neighbor

Statistical

Gaussian Model Based
Regression Model Based
Mixture of Parametric Distributions Based
Histogram Based
Kernel Function Based

Information Theroetic
Kolomogorov Complexity
relative entropy
entropy

Spectral
Principal Component Analysis
Compact Matrix Decomposition

Anomaly detection problems have multiple characteristics
that vary from instance to instance and are not confined to any
application domain, ultimately justifying the need for multiple
different techniques. These characteristics include:

a) Input Data: The nature of input data is a key aspect
of any anomaly detection technique. Generally the input is a
set of data instances, consisting of one (univariate) or more
(multivariate) attributes. Depending on the type and nature
of attributes different techniques may be applicable to the
specific anomaly detection problem. While the amount and
types (binary, categorical or continuous) of attributes is one
aspect of the inputs nature, another aspect is the relation
between data instances. Relationships can be of sequential,
spatial or graph based nature, or data instances may have
no relationship amongst themselves, in which case they are
referred to as record or point data. It is also possible for data
instances to have mixed relationships, for example climate
data, which can be considered spatio-temporal as instances are
related to its neighbors and include the sequential component
of time.

b) Type of Anomaly: Another important aspect is the
nature of the anomaly to be detected. If an anomaly is deemed
a data instance beeing an outlier regarding the set of other data
instances, it is considered a Point Anomaly. If the data instance
is considered anomalous only under a specific condition, but
not otherwise, it is referred to as Contextual Anomaly. The
context needs to be defined for a specific problem instance,
and is generally given by or derived from a subset of attributes,
therefore for Contextual Anomalies the data instance attributes
are divided into contextual and behavioral attributes. If the
data instances are related, an anomaly can also consist of a
collection of data instances, of which a single instance must
not be anomalous on its own. These anomalies are called

Collective Anomalies. Depending on the data available a point
or collective anomaly problem can also be transformed to a
contextual anomaly problem.

c) Data Labels: The quality and availability of labeled
data is another characteristic of an anomaly detection problem.
Some techniques require labeled training data sets denoting the
anomalous and normal data instances. This mode of operation
is called Supervised anomaly detection. If a technique operates
on data sets containing only labels for the non-anomalous
instances it is considered Semi-Supervised. Unsupervised
techniques do not require training data and rely on the
assumption that anomalies are far more rare than normal
instances.

d) Output of Anomaly Detection: Another aspect of
an anomaly detection technique is the type of output it
will produce. The output can either be a label or a score
which are assigned to a data instance. While the score
denotes the degree to which that instances is considered an
anomaly, labels only define if an instance is anormalous or not.

B. Machine perception

In comparison to the topic of anomaly detection in general
the application of techniques in the domain of machine
perception is a relatively new application domain. As machine
perception systems are designed to deliver a very specific
functionality (like object detection) and the wide variety of
different sensors that may be used in such a system require
each technique to be adapted to the specific application
and tailored to its use case. Machine Perception could be
considered a subdomain of the Sensor Network domain
and shares the same challenges that need to be overcome:
resource constraints, online processing, noise, missing data,
distributed data sources [4]. In addition machine perception
algorithms operate on a higher level of abstraction and data of
higher dimensions than raw sensor data processing algorithms.
Having multiple levels of data representation (i.e. raw sensor
data, clusters, features, objects) in a processing pipeline of
machine perception algorithms leads to a new type of anomaly
that can occur in such systems, where the interpretation of data
on the different levels are incongruent. This type of anomaly
is called a compound anomaly. Detecting incongruent events
in multiple levels of data representation has been applied to
novelty and rare behaviour detection in video analysis [5] [6]
[7] and based on this pioneering work in detecting anomalous
observations in perception systems Kittler et al aimed to
develop a comprehensive framework architecture identifiying
the mechanisms needed for determining the true nature of
an anomaly in such systems. [1] Their system architecture
incoorporates components for observation anomaly detection,
reject option detection, incongruence detection and sensor
data quality gauging. They emphasise that the detection of an
anomaly and its qualification cannot be accomplished without
these sources of information, but do not detail the actual
anomaly analysis processes as they are problem specific.



III. PROBLEM STATEMENT

To formulate the anomaly detection problem for this work,
a basic architecture is shown as reference in figure 1.

A. System architecture

Fig. 1. Components in a LIDAR based driver assistance system

LIDAR sensors supply measurements in form of a point
cloud to the object detection and tracking component
which identifies other traffic participants. Based on this
information the driver assistance functionality implements
the decision making process and controls the actuators. The
anomaly detection system aims to detect manipulation of the
information that is beeing supplied in form of the object
geometry model. In the following sections the characteristics
(see II-A) and challenges for this anomaly detection problem
are detailed.

B. Input Data

Perception algorithms provide driver assistant functions the
list of percieved objects further references as prediction. An
object has a multitude of attributes, of which the most basic
ones are:
• position: ~p
• velocity: ~v
• acceleration: ~a
• rotation: ~θ
• dimension: ~dim

This information is derived from the point cloud generated
by the LIDAR sensor, which is represented as a list of
points in three dimensional space, further refereced as the
set of measurements M = { ~M1, ~M2, ..., ~Mn}. Velocity and
acceleration are estimated by accumulating the position of an
object incorporating the dimension of time. The input data
is characterized as multivariate with attributes of continuous
type and a spatio-temporal (see II-A0a) relationship between
instances.

C. Type of Anomaly

The type of anomaly we are aiming for to detect are
of collective and contextual nature as a scenario leading to
a reaction, fabricated by an attack on the OGM (Object
Geometry Model), can also occur legitimately and may affect
multiple data instances, in which case they are deemed
collective. For this problem we define the context as the

measurement data supplied by the sensors M. If a prediction
P does not align with the given context (measurement M), it
is deemed anomalous (see contextual anomaly II-A0b).

For this prototype the following attacks will be considered,
as they may result in a reaction of the vehicles controlling
functions:

1) Hiding: Removing an object
2) Fabrication: Adding an object
3) Manipulation: Changing the positional vector of an

object
Reactions that may be provoked include safety break,

evasive maneuvers, acceleration and deceleration.

D. Data Labels

While it would be possible to automate the creation of
labeled data for attack scenarios, such data is not available
yet. The automatic manipulation and labeling of data is a high
effort task and will need a fair amount of ground truth data
as well as a formal definition of scenarios. Additionally the
task of automation is not trivial as not every scenario can be
applied to any ground truth data, and an automatic detection
of applicability would be necessary. Therefore we chose an
unsupervised (see Section II-A0c) approach for this prototype.

E. Output

Because sensorical data is afflicted by noise and predictions
can only be made with a certain likelihood an anomaly
detection mechanism for this problem should assign a score
representing the probablility of an anomaly, instead of a label
(see II-A0d).

IV. CONCEPT

The anomaly detection problem described in III shows the
two main issues that need to be addressed:

a) Spatio-temporal data: The relationship between data
instances includes the dimension of time, as data instances
contain measurements and predictions of the same objects in
several different points in space and time. As the probablility
of an anomaly is tied to the specific object which may be
manipulated, it is necessary to update the score of an object
with each incoming data instance, representing a timestep
(moving forward in the time dimension). Therefore we need
to model the time relationship between data instances, more
specifially the impact of past assessments to our current
estimation of the probablility of an anomaly. The dimension
of time is discrete for this problem as it is represented by the
sequence of incoming data instances which are published with
a certain frequency which results in discretization of the time
component.

b) Contextual anomalies: We defined the context for
this anomaly detection problem as the raw sensorical data
(point cloud, see III-C). The relationship between contextual
and behavioral attributes need to be modeled in order to
evaluate the condition under which a data instances is deemed
anomalous.



Furthermore there are non functional aspects which should
be considered in the solution, depending on the use case of the
anomaly detection mechanism. As this problem is allocated
in the cyberphysical automotive domain, safety is an aspect
of huge importance. Therefore the solution must have high
reliability. Also the real-time environment must be considered
assuming an online use case in which the acting components
must include the result of the anomaly detection component
in the decision if it should act upon the given situation.

A. Binary Bayes Filter
To handle the time relationship between data instances we

use a Binary Bayes Filter in our prototype. In this section we
have a closer look at the mathematical derivation of this filter
and how it applies to our problem, with the inputs described
in section II-A0a. In the following section the contextual input
attribute measurement at timestep t will be described as mt,
and the behavioural input attribute prediction at timestep t as
ot. A subset (sequence) of measurements (M) is denoted as
mm:n, the same notation is used for a subset (sequence) of
predictions (om:n).

We define A, the conditional probability that the prediction
ot of sequence o1:t is anomalous given the contextual input of
measurements m1:t as:

p(At|m1:t, o1:t) (1)

Furthermore we assume that what we are going to measure
at t is not affected by past measurements 1:t-1 (Markov
property).

p(mt|A,m1:t−1, o1:t) = p(mt|A, ot) (2)

And also that the prior probablity of anomaly, independent
from measurement at t, is also independent from the prediction
at t, as we need the contextual information (measurement) to
determine the probablity.

p(A|m1:t−1, o1:t) = p(A|m1:t−1, o1:t−1) (3)

Using bayes theroem to expand (1) and applying
assumptions (2) and (3) this equation is expanded to the
following:

p(A|o1:t,m1:t) =
p(mt|A, ot)p(A|m1:t−1, o1:t−1)

p(mt|m1:t−1, o1:t)
(4)

Where p(mt|A, ot) represents the measurement model, the
probability of measuring mt given an anomalous ot. Again,
expanding with Bayes Theorem and applying the Markov
Property:

p(A|o1:t,m1:t) =
p(mt|A, ot)p(A|m1:t−1, o1:t−1)

p(mt|m1:t−1, o1:t)

p(mt|A, ot) =
p(A|mt, ot)p(mt|ot)

p(A|ot)

p(A|o1:t,m1:t) =
p(A|mt, ot)p(mt|ot)p(A|m1:t−1, o1:t−1)

p(A|ot)p(mt|m1:t−1, o1:t)

p(A|o1:t,m1:t) =
p(A|mt, ot)p(mt|ot)p(A|m1:t−1, o1:t−1)

p(A|ot)p(mt|m1:t−1, o1:t)

results in the following equation:

p(A|o1:t,m1:t) =
p(A|mt, ot)p(mt|ot)p(A|m1:t−1, o1:t−1)

p(A)p(mt|m1:t−1, o1:t)

Because A is a binary state we can formulate

p(¬A|o1:t,m1:t) =
p(¬A|mt, ot)p(mt|ot)p(¬A|m1:t−1, o1:t−1)

p(¬A)p(mt|m1:t−1, o1:t)

and derive the ratio of probabilities (Chance)

p(A|o1:t,m1:t)

p(¬A|o1:t,m1:t)
=

p(A|mt,ot)p(mt|ot)p(A|m1:t−1,o1:t−1)
p(A)p(mt|m1:t−1,o1:t)

p(¬A|mt,ot)p(mt|ot)p(¬A|m1:t−1,o1:t−1)
p(¬A)p(mt|m1:t−1,o1:t)

p(A|o1:t,m1:t)

p(¬A|o1:t,m1:t)
=

p(A|mt,ot)���
�p(mt|ot)p(A|m1:t−1,o1:t−1)

p(A)((((
(((p(mt|m1:t−1,o1:t)

p(¬A|mt,ot)��
��p(mt|ot)p(¬A|m1:t−1,o1:t−1)

p(¬A)((((
(((p(mt|m1:t−1,o1:t)

p(A|o1:t,m1:t)

p(¬A|o1:t,m1:t)
=

p(A|mt,ot)p(A|m1:t−1,o1:t−1)
p(A)

p(¬A|mt,ot)p(¬A|m1:t−1,o1:t−1)
p(¬A)

p(A|o1:t,m1:t)

p(¬A|o1:t,m1:t)
=

p(A|mt, ot)p(A|m1:t−1, o1:t−1)p(¬A)
p(¬A|mt, ot)p(¬A|m1:t−1, o1:t−1)p(A)

p(A|o1:t,m1:t)

1− p(A|o1:t,m1:t)
= (5)

p(A|mt, ot)

1− p(A|mt, ot)︸ ︷︷ ︸
current timestep

p(A|m1:t−1, o1:t−1)

1− p(A|m1:t−1, o1:t−1)︸ ︷︷ ︸
recursion

1− p(A)
p(A)︸ ︷︷ ︸
prior

(6)

to convert the probability to log odds form:

l(A|m1:t, o1:t) = l(A|mt, ot)︸ ︷︷ ︸
model

+ l(A|m1:t−1, o1:t−1)︸ ︷︷ ︸
recursion

− l(A)︸︷︷︸
prior

leading to the final equation of:

lt = model(A, ot,mt) + lt−1 − l0 (7)

Using log odds eases the process of updating the anomaly
score with new evidence. We chose to use log odds over
probability as it will help to satisfy possible real-time
constraints.

B. Jaccard Index

As mentioned in the beginning of this section, the other
issue to be solved is the relationship between contextual
and behavioural attributes to evaluate the condition for
which a prediction, the behavioural attribute, is deemed
to be anomalous. The concept is based on the idea that
the sets of measurements and the sets predictions has to
have a certain degree of similarity for the prediction to be
considered legitimate. A statistical method to model similarity



J(A,B) =
|A ∩B|
|A ∪B|

(8)

Fig. 2. Jaccard Index

(or diversity) of finite sets is the Jaccard Index also called
Intersection over Union.

To apply this method to our data we need to compute the
intersection and union operations on the sets of measurements
and predictions. Because the elements of these sets are of
different types, voxel for the measurements, and bounding
boxes for the predictions we need to use a mapping function
that lets us compute those operations on these two different
types of data, either mapping one to the other or find a
common representation. A mapping function for this case
translates to the reverse measurement model describing what
is likely to be measured given a prediction.

Ideally the reverse measurement model would be able to
describe the exact voxels that must have been scanned for a
given prediction. As this is virtually impossible and also for
simplicities sake, we will use a mapping of the two types to
a common type, in this protoype a rectangle. This is a very
straightforward solution as the Jaccard Index can be applied
easily to the geometric representation of a rectangle, and we
can find an simple function for each type that can map the data
to the rectangle. For the the prediction we simlpy remove the
height dimension of the bounding box. And for the voxel data
we need to fit a minimal rectangle around the measurement
points that are probably relevant to the prediction. The relevant
voxels are determined by the distance to the center of the
predicted object in question, which depends on its dimensions.

V. EVALUATION

For the evaluation of the concept we modified the OGM
according to the scenarios in III-C.

Fig. 3. Car Trajectories

For the Fabrication scenario a car has been added, driving
with an y-offset of 5 meters, in the coordinate system relative
to the ego vehicle, alongside an unmanipulated ground truth
object following the same trajectory. In figure 3 the trajectories
of the car are displayed using the world coordinate system
used by the tracking algorithms. The blue points represent
the center point of the ground truth object while the yellow
points is the center point of the fabricated car. Using the
manipulated data we ran the prototype of the described concept
and recorded the anomaly score together with each incoming
pair of predictions and measurements. In 4 the trajectory

Fig. 4. Anomaly score of the ground truth object

of the unmanipulated car is displayed again, color coded
with the anomaly score of each timestep. The coloring is
achieved by using RGB coloring in the following way rgb(1−
anomaly score, anomaly score, 0) while anomaly score is
a floating point number ranging from 0 (low confidence) to 1
(high confidence), a low confidence meaning a high probability
of anomaly (red). In the scenario the ground truth object is
overtaken by the ego vehicle running the tracking algorithms,
gradually reducing the distance between the two vehicles.
When performing measurements at high distance scan points
are most dense at the rear end of the car and a scan beam
is unlikely to hit the A-pillar of the tracked object. As a
result the rectangle that is fit around the scan points in the
mapping function will only be covering the rear end of the car
resulting in a low intersection over union, and as a result a low
confidence, as can be seen in figure 4. As soon as the tracked
vehicle is close enough that points in the frontal section of the
car are scanned, the fitted rectangle increasingly matches the
bounding box of the object and the confidence increases. After
passing the car the confidence drops again as the sensors are
aligned to measure in front of the vehicle, and there are no
more incoming measurements that hit the area of the tracked
object.

Figure 5 shows the trajectory and anomaly score of the
fabricated object in the same manner.



Fig. 5. Anomaly score of the fabricated object

The fabricated object is successfully detected as an anomaly
until the distance to the overtaking is only a few meters.
This is due to scan points hitting the ground in front of
the car performing the tracking. These points are erroneously
associated with the fabricated object leading to a rise in
confidence.

Another scenario that has been evaluation is the
manipulation of an objects position as shown in 6

Fig. 6. Car Trajectories

Here the trajectory of an existing ground truth object has
been manipulated for a certain period. Blue points indicate the
original real trajectory. In figure 7 the outcome of the anomaly
detection is displayed again showing a low confidence for
the manipulated trajectory, but also showing the same issues
related to the very basic mapping function used in this
prototype as discussed before.

The last scenario that was mentioned in III-C is Hiding,
deletion of an object. The mapping function used in this

Fig. 7. Anomaly Score.

prototype has the constraint that it needs the objects location
and dimension to map the measurement to the common
representation of a rectangle. Therefore it is not possible to
detect the deletion of an object with this approach.

VI. CONCLUSION AND OUTLOOK

While the basic concept has proven to be successfull
the realization needs improvement to be reliable and to
satisfy every functional requirement. For this prototype a very
straightforward and easy solution circumventing the need for
a real reverse measurement model was chosen, by mapping
the measurement and the prediction to a rectangle, reducing
the dimensions of the data drastically. When using a reverse
measurement model that is derived from the sensor model used
to create the measurements results will improve and issues
described the evaluation can be negated.

While this approach is based on the concept of confirming
occupied space with measurements it is not sufficient to detect
deleted objects. For this functional requirement free space
detection can be incoorporated in the solution. Also the Binary
Bayes filter used in this prototype is derived for usage of a
single source of evidence. This can be adapted to use multiple
sources of evidence as contextual attributes.

A car is usually equipped with more than one sensor, while
data from multiple LIDAR sensors are used for this prototype
the information of origin is discarded, again reducing the
dimensions of input data. Modeling relationships can help
identify anomalies by incooporating this information into the
anomaly detection mechanism.
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