
TFG del Grado en Ingeniería
Informática

Developing a CAN Ethernet
Gateway for Software Defined

Networks in Future Cars

Presented by Yunus Ülker
in the Universidad de Burgos — June 6, 2022

Tutor: Juan Jose Rodriguez

D. Juan Jose Rodríguez Diez, profesor del departamento de Ingeniería
Informática, área de Lenguajes y Sistemas Informáticos.

Expone:

Que el alumno D. Yunus Ülker, con DNI L2RFP18KZ, ha realizado el
Trabajo final de Grado en Ingeniería Informática titulado título de TFG.

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del
que suscribe, en virtud de lo cual se autoriza su presentación y defensa.

En Burgos, June 6, 2022

Vº. Bº. del Tutor:

D. Juan Jose Rodríguez Diez

Vº. Bº. del co-tutor:

D. nombre co-tutor

i

Abstract

The raise of new technologies for in-vehicle networks, as for
example, Highly Automated Driving, comes with a high amount of
demands. The traditional in-vehicle networks cannot meet all of them,
which gives the motivation to search for alternatives. A promising
solution is to use high-speed ethernet backbone networks to connect
various traditional networks such as CAN buses.

This work provides a gateway solution between CAN buses and
ethernet networks. The specialty of this gateway is that it acts like
an SDN network device instead of having a local decision making
logic. After a deep evaluation the resulting gateway prototype is
deployed in the experimental setup of the CoRE research group.

Keywords

Gateway, In-Vehicle network (IVN), Software Defined Networking
(SDN), Ethernet, CAN, Real-time communication, OpenFlow

Contents

Contents ii

List of Figures iv

List of Tables vi

Introduction 1

Project Objectives 3

Theoretical Concepts 5
3.1 Controller Area Network . 5
3.2 Real-time Ethernet . 6
3.3 Security for In-Vehicle Networks 7
3.4 Software Defined Networking 8
3.5 Gateway . 10
3.6 Concept of the Approach of this Work 12

Tools and Technologies 15
4.1 Setup and Implementation 15

4.1.1 Open Network Operating System (ONOS) 15
4.1.2 Open vSwitch (OVS) 15
4.1.3 cURL . 16
4.1.4 ip command from iproute2 16
4.1.5 Sockets . 16
4.1.6 can-utils . 17
4.1.7 tcpdump . 17
4.1.8 Python . 17

ii

CONTENTS iii

4.1.9 Bash scripts . 17
4.1.10 Git . 18
4.1.11 Trac . 18
4.1.12 Microsoft Teams . 18

4.2 Evaluation . 18
4.2.1 Microbenchmark Gateway Virtual 18
4.2.2 Microbenchmark Gateway using Hardware 1 23
4.2.3 Microbenchmark Gateway using Hardware 2 31
4.2.4 Deploying the Prototype 35
4.2.5 Result . 37

Relevant aspects of the development of the project 39
5.1 Beginning of the Project . 39
5.2 Lessons Learned . 40

5.2.1 Structural Related 40
5.2.2 Technical Related . 41

Conclusion and Outlook 43

Bibliography 45

List of Figures

2.1 Traditional gateway architecture, forward logic inside the gateway 4
2.2 Gateway architecture used in this work, forward logic outside

the gateway . 4
3.1 TTE, simple schedule example [13] 7
3.2 TSN, simple schedule example [5] 7
3.3 Comparing SDN to conventional networking.[12] 9
3.4 Examplary topology for an automotive gateway. [15] 11
3.5 Visualizing the size differences of CAN and ethernet frames. . . 12
3.6 Shows the mapping of CAN and ethernet frame fields. 13
3.7 Example: A translated CAN extended frame as 802.1Q Ethernet

Frame. 14
4.1 Network topology used in the virtual microbenchmark showing

the three measurement points. 19
4.2 g1n1000 . 21
4.3 g5n1000 . 21
4.4 g0n10000 . 21
4.5 g1n100000 . 21
4.6 g1n100000 plotted twice. Once with scaling the y-axis to a

maximum of 1ms and once showing all points. 23
4.7 Network topology used in the microbenchmark using hardware

shpwing the two measurement points. 24
4.8 Microbenchmark on a Raspberry Pi 4. 26
4.9 OVScancan-bitrate1000payload4 30
4.10 OVScancan-bitrate1000payload0 30
4.11 OVScancan-bitrate500payload0 30
4.12 caneth-bitrate1000payload4 . 30
4.13 Microbenchmark 2 on a Raspberry Pi 4. No additional nice value. 33
4.14 Microbenchmark 2 on a Raspberry Pi 4. Negative nice value of 20. 34

iv

LIST OF FIGURES v

4.15 The demonstrator car . 35
4.16 The table construction . 36
4.17 Network topology from the experimental setup 36

List of Tables

4.1 List of used configurations for the experiment showing the given
parameter to cangen . 20

4.3 Time differences between translator programs. Positive values
showing slower processing using the SDN optimized gateway and
vice versa. 28

4.2 Microbenchmark on a Raspberry Pi 4 as table. Also see figure 4.8. 29

vi

Introduction

In-vehicle networks are needed to connect sensors, actuators and Electronic
Control Units. Traditional in-vehicle networks were statically configured and
deployed in the manufacturing process. New technologies such as Advanced
Driver Assistance Systems, Highly Automated Driving and Over-the-Air-
Updates have higher demands than the traditional solutions can provide.
This problem motivated the study of using ethernet as a highspeed backbone
network connecting different domains [7]. Further studies are analyzing the
use of Software Defined Networking (SDN) to make the ethernet networks
more flexible and secure [9].

This work contributes to the studies about the use of SDN ethernet
backbones networks. Multiple transport protocols are used for in-vehicle
networks and need to pass a gateway to be sent over the ethernet backbone
network. Traditional gateways are implemented with one specific translation
strategy and a static local configuration. Since the idea of SDN is to make
network devices become simple forwarding devices, and not make their own
decisions, traditional gateways can not be seen as a part of an SDN. The
idea of this work is to develop a prototype gateway being part of an SDN,
with all the resulting functionalities and advantages.

1

Project Objectives

The project objective is to design, implement and evaluate a CAN ethernet
gateway solution. The special challenge of this gateway is, that it shall not
have its own control logic. Instead, it should be programmable via protocols
of the SDN family. An extensive performance evaluation will be carried out
and when obtaining the desired results, the prototype will be deployed in
the experimental setup of the CoRE research group[8].

The following images demonstrate the traditional architecture of gate-
ways, shown in figure 2.1, and the used gateway architecture for this work,
shown in figure 2.2.

Outsourcing the control logic to an SDN controller creates the need
of configuring the controller with the desired forwarding behavior for the
gateways. In this work this is done for ONOS as the SDN controller.

3

4 Project Objectives

Figure 2.1: Traditional gateway architecture, forward logic inside the gateway

Figure 2.2: Gateway architecture used in this work, forward logic outside
the gateway

Theoretical Concepts

3.1 Controller Area Network
CAN was developed by the Robert Bosch GmbH and became standardized in
1993 with ISO 11898 allowing a bandwidth up to 1Mbit using only the stan-
dard 11-bit identifier[10]. In 1995 this standard got an amendment including
the extended frame format supporting a 29-bit identifier[11] supporting the
same 0-8 bytes as data field. Since the CAN bus is broadcast-based it is not
possible to address a specific destination or to know the origin of a received
message. Neither it offers an authentification process.

The Controller Area Network (CAN) architecture is used in most auto-
motive systems[14]. The CAN bus is a multi-master serial bus system with
all messages being broadcasted. Dominant and recessive bits assure that
higher prioritized messages suppress others without any additional regula-
tions needed. Every sending process of an electronic control unit (ECU)
starts with a start-of-frame (SOF) bit followed by a unique identifier code.
This identifier establishes the priority of the message. If two ECUs are trying
to send their identifier code a conflict will occur. The lower priority-based
ECU will notice that his sent recessive bit (logical one) was overwritten by
a dominant bit (logical 0) of a higher prioritized message. This leads to
aborting the sending process for the lower prioritized message. Messages
always end with a CRC checksum for error detection and a recessive set
ack-Bit, which has to be overwritten with a dominant bit from the receiver
to acknowledge the error-free receiving[2].

This architecture is optimal for sending many short messages, for example,
temperature sensor data or the angle of a steering wheel. Mainly because of
the possibility to prioritize safety-critical messages, data consistency through

5

6 Theoretical Concepts

the broadcast architecture and the low costs, which result from a small
number of cables and little planning effort.

To deal with the growing amount of ECUs a typical practice is to connect
and combine different CAN domains. Often this is realized through backbone
networks based on ethernet with the need of gateways. Ethernet without
additional extensions is not supporting priorities and works with best-effort
delivery. Best-effort delivery is not able to accomplish the requirements of
safety-critical communication, which is necessary for automotive networks.

3.2 Real-time Ethernet
Many scenarios require real-time communication. In automotive networks,
for example, an airbag always needs to receive the triggering data in time to
work safely. Since this is about safety it is necessary to always guarantee it.
This is called a hard real-time requirement which makes it a safety-critical
system. Because of those scenarios real-time extensions for ethernet are
needed to use ethernet in a vehicle network. The most extended solutions
for the use of ethernet in safety-critical systems are Time-triggered Ethernet
(TTE) and Time-Sensitive Networking (TSN)[20].

TSN supports sending time-triggered as TTE does, but also supports
sending priority based. As TSN is integrated into the IEEE 802.1Q standard,
which enhances ethernet frames with a priority field, a VLAN identifier, and
a drop eligible bit. Plenty of strategies are available to deal with prioritized
message sending, called shaping in the context of TSN. The simplest shaper
to comprehend is always sending the highest priority frame first.

Here the worst case would be a high prioritized frame arriving exactly
after starting to send a maximal sized frame, causing the high prioritized
frame to wait until the transmission completes. To reduce that maximal delay
frame preemption defined by IEEE 802.Qbu [20] is introduced, reducing the
maximum delay to the time that the preemption of a frame needs, instead of
waiting to complete the transmission. The only way to reduce this dynamic
delay even more, is to not even start sending traffic before high prioritized
frames arrive, which is the idea of time-triggered sending.

To achieve time-triggered sending TSN and TTE are based on syn-
chronized timers between the different networking devices and the use of
Time-Division Multiple Access (TDMA). Both of them use off-line schedule
tables to send time-triggered (TT) data. Those schedules repeat cyclically.
TTE divides whole cycles, called cluster cycles, into sub-cycles, called inte-

3.3. SECURITY FOR IN-VEHICLE NETWORKS 7

gration cycles [13]. The clusters cycles just repeats and whenever there is
no TT data sent, best effort (BE) data is possibly transmitted. A simple
example with two integration cycles for each cluster cycle is shown in figure
3.1.

Figure 3.1: TTE, simple schedule example [13]

TSN splits the cycles into slots with assigned priorities as exemplarily
shown in 3.2.

Figure 3.2: TSN, simple schedule example [5]

Even though predefined timeslots are minimalizing the delay and jitter,
they have the disadvantage of needing an offline schedule and synchronized
timers on the networking devices. Depending on the requirements it is often
enough to use TSN with shaping algorithms not having those restrictions.
But these are basically the options for real-time environments using ethernet.

3.3 Security for In-Vehicle Networks
In modern vehicles the five most widely used in-vehicle networks systems
are LIN (Local Interconnection Network), CAN (Controller Area Network),

8 Theoretical Concepts

FlexRay, Ethernet, and MOST (Media Oriented Systems Transport)[19].
As in many old protocols, the security aspect was not extensively considered
inventing. CAN, for example, is natively not offering any form of access
control, authentication or encryption [18]. In the past vehicles were rarely
connected, so this lack of security did not imply a big security threat, because
a possible attacker needed physical access.

The evolvement of new technologies like Advanced Driver Assistance
Systems and Highly Automated Driving makes the interest in Connected
and Automated Vehicles grow. While connecting cars to the outside world
promises enhanced functionality and flexibility, the security lacks of long-
time used protocols become a relevant threat. To counteract there are
many protocol-specific extensions to close different kinds of security gaps.
Analyzing in detail and evaluating many different extensions, for numerous
network technologies, is out of scope for this work. Those attempts mainly
focus on giving more security for certain communication channels.

It could be possible to introduce a central unit that has knowledge of
traffic over the whole system. This would allow solutions across different
protocols. After the up-showing threat via the connection to the outside
world, the biggest potential threat is coming from newly added devices
or applications [9]. With a central unit there could be one standardized
authentication process improving security, flexibility and configuration effort.
The global view of a central unit also facilitates recognizing errors or possible
attacks using anomaly detection strategies. There are plenty of different
strategies and algorithms for anomaly detection, but the basic idea is to
compare the actual traffic with the expected one. The recognition of errors
and attacks is a necessary step to enable fail-operational states.

3.4 Software Defined Networking

3.4. SOFTWARE DEFINED NETWORKING 9

Figure 3.3: Comparing SDN to conventional networking.[12]

The Open Networking Foundation (ONF) defines SDN as the physical
separation of the network control plane from the forwarding plane, and
where one control plane is in control of several devices. "Software-defined
networking: A comprehensive survey"[12] defines an SDN as a network
architecture with the following four characteristics. The control and data
plans are separated, making networking devices simple forwarding elements,
that are only in charge of the data plane. Instead of using the destination of
a package for the forwarding decision, the control plane decides flow-based.
Flows are filter criteria to match packets via their field values and a set of
instructions to apply to them (e.g. to forward them over a specific port).
The control logic is moved to an external and logical centralized entity,

10 Theoretical Concepts

called the SDN controller. The network needs to be programmable through
applications running on the SDN controller.

Even when there are many different definitions available for SDN, fig-
ure 3.3 is already giving a good understanding of the architecture. SDN
controllers always offer two different APIs. The southbound API commu-
nicates with the forwarding devices and the northbound API to allow the
development of network applications. This separation of concern gives many
advantages in flexibility and security. Developing network applications
or modifying network policies with high-level languages, using an API is
way less error-prone and simplified compared to the traditional low-level
device-specific configuration. Additionally, a control program could react to
changes in the network. This functionality greatly benefits from the global
view of the network.

When developing network applications with SDN, the southbound API
behavior is similar to the behavior of well-standardized hardware drivers.
The function of generating statistics by counting matched flow-entries, for
example, is natively included in the most widely supported southbound API
OpenFlow. This ability makes anomaly detection discussed in section 3.3 for
in-vehicles networks interesting. Also, the possibly following fail-operational
state can be set up using OpenFlow.

3.5 Gateway
Seo et al. describe a getaway as "an indispensable device to enable the
seamless communication between heterogeneous networks." [15] With het-
erogeneous networks meaning networks using different protocols and media.

As exemplarily shown in figure 3.4, modern cars have many different
networks. Depending on their demands, they use different protocols to
assure, for example, low latency, high bandwidth, fail-tolerance or low costs.

3.5. GATEWAY 11

Figure 3.4: Examplary topology for an automotive gateway. [15]

There are several reasons which make gateways in the context of in-
vehicle networks interesting. For example, connecting an ethernet backbone
network via gateways to different buses to reduce the number of cables
needed, lowering costs and weight.

Gateways for in-vehicle networks have many requirements, especially
when they need to serve as hard real-time systems. They need to be reliable,
even having in mind environmental influences like vibrations or temperature.
Since this work is about researching an approach including developing a
prototype and not about developing a deployable product, many of the final
requirements are out of scope or are only slightly discussed. Protocol-specific
translation strategies to enable more seamless communication between an
SDN and different CAN busses, are the main focus in the context of this
work.

12 Theoretical Concepts

3.6 Concept of the Approach of this Work
A gateway needs to translate one protocol into another. Both CAN and
ethernet are based on frames. There are two different decisions to make.
The smallest ethernet frame is still four times bigger than the biggest CAN
frame. This difference causes the need for the first decision. Should the
gateway translate one frame to one frame or rather encapsulate many CAN
frames into one ethernet frame. Depending on that decision, it is possible
to make the second one. Both protocols contain different information,
which cannot be translated directly. For example, the biggest part of an
ethernet frame is occupied by source and destination information, meanwhile
CAN is broadcast oriented and does not provide any information about the
destination nor the source. So it is necessary to choose how to translate one
protocol into the other.

Figure 3.5: Visualizing the size differences of CAN and ethernet frames.

The strategy to translate frames one to one has the obvious disadvantage
of large traffic overhead. To better understand the amount of overhead there
is a simple example. In a point-to-point connection, one megabyte of traffic
packed as maximally sized CAN frames would turn into four megabytes of
traffic packed as ethernet frames. But considering the associated bandwidth
of the different links, the big ethernet frame takes only 0,2% of the time
the small CAN frames take to be transmitted, so this overhead is not a big
problem.

If two CAN frames would be sent encapsulated into one ethernet frame
instead, the traffic amount would get halved, but causing a delay for the first
CAN frame since it will not get sent until the second frame arrives. This
delay-to-overhead conflict is analyzed in many gateway research documents.
In this work another aspect is relevant. Each CAN frame can have a different
destination and the gateway does not know them. If CAN frames with
different targets are encapsulated in one ethernet frame, another instance
would need to receive, split them up and resend them again separately,
resulting in even more traffic than directly sending frames mapped one-to-
one.

3.6. CONCEPT OF THE APPROACH OF THIS WORK 13

Another argument to choose one-to-one mapping is that using SDN
instead of a traditional networking, makes the traffic of the network trans-
parent and analyzable. If many CAN frames are encapsulated into ethernet
frames, SDN would not be capable of analyzing each CAN frame on its own.

Taking all those arguments into account, the author’s choice of one-to-
one mapping is comprehensible. The most important argument for choosing
one-to-one mapping is to get the SDN-related benefits for the CAN traffic.
Generally SDN controllers can read all fields from layer two to layer four,
corresponding to the OSI layer model. Therefore, to get those SDN-related
benefits, it is necessary to map CAN fields into fields lower than layer five,
which means to not map the important information simply into the data
field.

Which CAN field to map with which ethernet field is a design question.
It is especially difficult because the ethernet is used for point-to-point
communication and CAN is broadcast-oriented. The biggest part of an
ethernet header is occupied by source and destination information, CAN
frames do not provide any. The proposed solution to this question is shown
in figure 3.6.

Figure 3.6: Shows the mapping of CAN and ethernet frame fields.

The destination MAC address is mapped to the CAN id field and vice
versa. The source MAC is not mapped to any CAN field, but it is read
and set by the gateway program to distinguish and represent the different
connected CAN buses. This source MAC values need to be configured
manually to assure network-wide uniqueness. An example of a CAN frame
translated to an ethernet frame is shown in figure 3.7. As this section serves
to show this concept, much information shown in the example like SSR flags
are not explained in this part, but will be explained in detail in the Annex
document.

14 Theoretical Concepts

Figure 3.7: Example: A translated CAN extended frame as 802.1Q Ethernet
Frame.

Even if SDN controllers are capable of interpreting and changing fields,
this design follows the rules of the ethernet protocol. This is not only about
sticking to conventions. The fact that the gateway behaves exactly as any
other network device, makes it possible to use this gateway to connect any
CAN bus to any ethernet network.

Tools and Technologies

4.1 Setup and Implementation

4.1.1 Open Network Operating System (ONOS)
The Open Networking Foundation describes ONOS as "the leading open
source SDN controller for building next-generation SDN/NFV1 solutions"[6].
The special about this gateway approach is that the gateway’s routing
logic is not part of the gateway itself. Instead, the gateway only receives
routing rules via the southbound API of an SDN controller. The provided
complexity, which differs with every SDN controller, is not exploited for this
work and therefore the question of which SDN controller to choose would
not matter. But since this work contributes to the CoRE research group,
it is necessary to be compatible with their experimental setups, which use
ONOS as an SDN controller. For real use, the companies would develop a
vehicle-specific SDN controller anyway.

4.1.2 Open vSwitch (OVS)
Open vSwtich is an open-source virtual switch software and "is used in
multiple products and runs in many large production environments (some
very, very large). Each stable release is run through a regression suite of
hundreds of system-level tests and thousands of unit tests."[17]

As the quote shows this software mainly targets big virtualized networks,
but the most functionalities are not needed in the scope of this work, neither
will they. The reason to use a virtual switch in this work, is that the gateway
becomes controllable via standardized protocols, which allows controlling

1network functions virtualizations

15

16 Tools and Technologies

the gateway as part of the SDN with all resulting benefits. To do so, one
virtual switch is installed on each gateway having an interface to the ethernet
network, including a route to the SDN controller, and for each CAN bus
connected, a virtual ethernet port linked to a CAN bus via an instance of
the gateway software.

4.1.3 cURL
ONOS, as chosen SDN controller for this work, provides three different
interfaces. A web-based graphical user interface (GUI), a command-line
interface (CLI), and a REST API. Curl is just one of many open-source
tools available that enable communication with a REST API and could be
replaced by another tool.

4.1.4 ip command from iproute2
Ip is the standard tool to show and manipulate routing, network devices,
interfaces and tunnels under Linux. In modern Linux distributions, it is
pre-installed as part of the iproute2 collection. Since this work strongly
relies on network functionalities and uses a Linux distribution as OS, using
ip is the modern recommended way to set the network devices up.

Installing the driver collection SocketCAN makes ip support CAN and
virtual CAN buses and is therefore needed.

4.1.5 Sockets
Sockets are interfaces to network devices provided by the OS. They connect
user processes with the network stack at different entry points. Instead of
using the socket as interface to the transport layer, this work uses them
as interface to the data link layer, which is the lowest software-defined
layer corresponding to the OSI reference model. This principle is also
known as raw socket programming or more specifically layer two raw sockets
programming.

Therefore, it is possible to set any value into any field before sending
ethernet frames, which is necessary to realize the CAN to ethernet translation.
This is needed, because the design of the approach requires, for example,
overwriting the mac address field with CAN specific data.

4.1. SETUP AND IMPLEMENTATION 17

4.1.6 can-utils
Can-utils is a collection of open-source userspace command-line utilities and
tools based on SocketCAN. The most relevant tools for this work are cansend,
candump, cangen and canplay providing simple functionalities like sending,
dumping, generating or sending dumped traffic cyclical. Alternatively to
can-utils, there are some python tools with similar functionality available
and it would be possible to implement an own solution.

4.1.7 tcpdump
Tcmpdump is a widely-used open source command-line tool to filter and
dump traffic. Also the name might be confusing, tcpdump is not restricted
to dump only TCP packages. In this work it is used to listen on differ-
ent interfaces, filter frames layer two fields based and dump them adding
timestamps. Again there are many alternative programs to accomplish this
task.

4.1.8 Python
Performance-wise, python gateway implementations can not fulfil real-time
requirements as analyzed in previous work by the CoRE group. To inspect
the measured times obtained by the dumping tools and visualize them, it is
still a simple and efficient solution. All the figures in the evaluation section
4.2 are drawn using the pyplot library. Python was also used to troubleshoot
traffic logs, when unexpected behavior occurred conducting experiments.

4.1.9 Bash scripts
Bash scripts do not give more functionality than the command line itself
but make many processes way easier. Instead of knowing every needed
command with all required parameters in the right order, users can read the
provided manuals from the scripts and execute them with a small amount
of parameters.

Some of the scripts are generally helpful, for example, the one to create,
link and configure the interfaces and the switch including the setup of the
connection from the switch to the SDN controller with a static port mapping
between host and OpenFlow ports. Others are only used for testing purposes,
as for example, to conduct the experiment Microbenchmark Gateway 4.2.1.

18 Tools and Technologies

4.1.10 Git
The website git-scm.com belongs to the Git community and describes Git as
"a free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency" [1].

The main purpose for the use of git was to develop the translater
program. The translator program was developed as a branch of an internal
git repository of the CoRE group. Another private git repository, hosted
by GitHub, was used to synchronize all other files. For those files, cloud
services such as OneDrive, could have been used as well.

4.1.11 Trac
"Trac is a minimalistic approach to web-based management of software
projects." [16]. The CoRE research group uses Trac to host an internal Wiki
service. Much information, for example, how to register a public key at
the git-server to access the repository, are given there. Also, the network
configurations used in the experimental setup of the in-vehicle network and
many other guides, are documented there.

4.1.12 Microsoft Teams
Most of the communication between members of the CoRE research group
is done via Microsoft Teams. Additional to meetings, multiple channels are
used to, for example, alert others when turning off the experimental setup
of the in-vehicle network.

4.2 Evaluation

4.2.1 Microbenchmark Gateway Virtual
Purpose

This experiment is chronologically the first one and serves to determine
how much time the different components consume approximately. The
general purpose of this experiment is to assure that the gateway approach
can be used in real-time environments, but having in mind that the final
prototype will behave differently. Additionally, the resulting time values
may be considered to improve certain parts of the strategies or algorithms,
if the gateway approach does not fulfil the requirements.

4.2. EVALUATION 19

Monitoring software is used to measure the needed time to transmit
packets and frames over the different interfaces. The network topology and
the measurement points are shown in figure 4.1. The obtained measurements
then can be analyzed stochastically and graphically.

Procedure

The base for the experiment is the network topology shown in figure 4.1.
The CAN buses, the ethernet links and interfaces, the switch and the SDN
controller are virtual and running locally. No interfaces are shown for the
connection between switch and controller, since they communicate over the
IP protocol and therefore, the host machines is able of transmitting their
data without the need of additional interfaces. The idea is to send CAN
frames to canbus 1 and receive them on canbus 2. To do so, the CAN frames
need to be transformed into ethernet packages, switched over the ethernet
network and be transformed back into CAN frames. To achieve this, the
CAN-Translators need to be started and connected to the switch and the
CAN buses. The controller needs to configure the flow-tables of the switch
to make the switch forward correctly.

Figure 4.1: Network topology used in the virtual microbenchmark showing
the three measurement points.

In this scenario it is enough to let the switch forward ethertype and
income port-based. The OpenFlow port naming scheme is independent of
the names which the forwarding devices use. So the mapping needs to be
clear when creating the needed flow-rule. The mapping can be read via
requests at runtime or be set configuring the switch, which makes it easier
to set up or repeat experiments.

20 Tools and Technologies

To make the switch behave accordingly, curl 4.1.3 and a JSON formatted
OpenFlow entry are used to communicate with the ONOS SDN-Cotroller
via its provided REST-API.

After setting up the network to be ready to transmit CAN frames from
canbus 1 to canbus 2, it is necessary to start dumping received traffic with
timestamps on four interfaces as shown in figure 4.1. To dump the traffic
of the CAN interfaces the tool candump 4.1.6 is used. For the ethernet
interfaces tcpdump 4.1.7 with an ethertype filter is used. Since everything
runs on the same host machine, there are no time synchronization difficulties
and the difference between the timestamps can be used, to determine the
needed time to traverse from one interface to the other.

Experiment Name Figure Delay in ms Amount of Frames
g0n10000 4.4 0 10.000
g1n1000 4.2 1 1.000
g5n1000 4.3 5 1.000
g1n100000 4.5, 4.6 1 100.000

Table 4.1: List of used configurations for the experiment showing the given
parameter to cangen

To meassure time in different scenarious cangen 4.1.6 with different
parameters is used. Since the minimum ethernet frame size is bigger than
a CAN frame, changing the CAN frame size via those parameters was not
done. Only the parameters to set a delay, to wait after generating one CAN
frame, and the amount after which to stop, were used.

All used configurations for the experiment are shown in table 4.1. Since
the bitrate of virtual CAN interfaces depends only on the processor, which
is shared with all other components, experimenting with this would not be
meaningful. That understanding makes the provided parameter, which is
only accurate to milliseconds, meet the requirements for this experiment.
The results are plotted and shown as figures using python.

The most of the used commands can be read in the submitted script
virtualbenchmark.sh.

Results

Before starting to analyze and possibly misinterpret obtained results, it
is important to be aware of the testing environment. This experiment is

4.2. EVALUATION 21

conducted on a personal computer with an i7 processor and mainly virtual
hardware, so it is not possible to guarantee the same timing behavior on
the final prototype.

It is also important to mention that the used time is not a constant and
depends on many factors. In the most cases, the amount of traffic makes the
biggest impact on the time measurements in a network. Virtual hardware
additionally depends on getting computational time of the CPU from the
OS. So, the CPU of the personal computer will cause faster working virtual
hardware than the final prototype will have due to performance difference.
On the other hand, it is expected that the number of background tasks will
cause bigger impacts on the measurements than on the prototype.

Figure 4.2: g1n1000 Figure 4.3: g5n1000

Figure 4.4: g0n10000 Figure 4.5: g1n100000

Configuration g0n10000, which sends without any delay resulted in
a nearly ten times higher bitrate on the CAN bus, than the maximum
bandwidth of the physical CAN bus would allow. Even though, this makes
the measured times unusable, it is interesting to see the general behavior.

22 Tools and Technologies

The gateways implement queuing algorithm to deal better with burst
traffic, especially from fast ethernet to slow CAN. Instead of losing frames
the needed time to transform ethernet frames to CAN frames raised to a
thousandfold. Analyzing the queue size and limiting the amount of traffic
being able to be switched to a gateway, needs to be done to avoid such a
situation and to fulfil hard real-time requirements. But as mentioned above
the environment of this experiment is explicitly not allowing to focus on
those requirements.

This and the restriction to pass the delay in milliseconds leads to the
choice of one millisecond as the minimal usable delay between each frame,
as evaluated in configuration g1n1000. Configuration g5n1000 has a five
times higher delay parameter, which means that it sends five times less data
in the same amount of time. Comparing the measurements of g1n1000 and
g5n1000 it might be surprising that the configuration with higher delay
transmits slower. This approves the factor of randomness, which cannot
be avoided conducting experiments on a personal computer that does not
have a steady process schedule. Sending 100 times more frames as done in
g1n100000 will help to reduce the effects of randomness. That amount of
sample values makes it also possible to demonstrate the relation between
outliers and scheduling issues as clearly demonstrated in figure 4.6, where
all outliers can be located around 50.000 and 90.000 samples.

Since those are avoidable by choosing a different OS or simply having
less -to this project unrelated- applications running in the background, they
can be neglected in a worse case analysis.

With the foregoing discussion configuration g1n100000 with a delay of
one millisecond and an amount of 100.000 frames sent, is evaluated as the
best configuration to use for the evaluation.

The translation, including the sending process, of a CAN frame as an
ethernet packet can be found mainly between 0.02 and 0.45 milliseconds
with an average translation time of 0.177 milliseconds. Adding the average
switching time from ethernet to ethernet with 0.017 milliseconds and the
average translation time from ethernet to CAN with 0.136 milliseconds, the
transmission of a frame from one bus to the other needs 0.330 milliseconds
on average.

To make an approximate worst-case analysis, the extreme outliers can
be ignored as mentioned above. The slowest measured times for translating
CAN to ethernet, switching ethernet to ethernet and translating ethernet to
CAN are about 0.9, 0.15 and 0.7 and would cause a transmission time of
1.75 milliseconds.

4.2. EVALUATION 23

Figure 4.6: g1n100000 plotted twice. Once with scaling the y-axis to a
maximum of 1ms and once showing all points.

Without guaranteeing the same speed using embedded computationally
weak computers, the measurements confirm the potential to deploy this
approach in a real-time environment and that the transforming takes more
time than the switching.

4.2.2 Microbenchmark Gateway using Hardware 1
Purpose

The general objective is to test the performance in a non-virtual environment
using an embedded computer and real CAN buses. This assures that the
estimation of the performance is closer to a possible real deployment in the
future. Also if the obtained results are good enough, this will allow to try
replacing the existing gateway solution in the experimental setup of the
CoRE group as the next experiment.

Procedure

The gateway is set up on a Raspberry Pi 4. Instead of using an external
SDN controller, the needed flow-entries are installed manually via terminal.
In total three computers, two CAN buses and one ethernet link are used.
All computers are connected to a LAN via WiFi, which is independent of
the CAN-ethernet network. The first computer is the raspberry working
as the gateway, being connected to both CAN buses and the ethernet link.
Another computer, working as the monitor, is also connected to these three
links observing incoming traffic and saving timestamps. The third computer
is used as the controller and is connected to one CAN bus to generate
traffic. This computer is also connected to the others via SSH to execute

24 Tools and Technologies

commands remotely and allow the use of scripts to automatize experiments.
The described topology is shown in figure 4.7.

Figure 4.7: Network topology used in the microbenchmark using hardware
shpwing the two measurement points.

To obtain a better understanding of the obtained performance, the exper-
iments will always be conducted using the gateway approach, developed and
presented by this work, and a solution similar to the existing solution used
by the CoRE group. This solution does not include forward logic, instead,
it forwards all traffic over the same interface given as start parameter. Also,
the performance for different bandwidths and different traffic is analyzed.
Therefore, the controller-computer generates CAN frames with different
sizes of payload and changes the bitrate configuration of the CAN buses.

For each experiment the controller installs flow-entries to the virtual
switch of the gateway to forward the traffic over the ethernet or CAN port.
Then the translator program, developed for this work or the translator
program similar to the one used by the CoRE group, needs to be started.
The chosen bitrate for the CAN buses needs to be set on each computer for
each connected CAN bus. The monitoring processes needs to be started
for each interface to monitor. The controller generates equal CAN frames
varying in their size for each experiment and sends them to one CAN bus.
The monitor and the gateway receive them. The monitor saves the arrival
time into a file. The gateway forwards them accordingly to the configuration
over his ethernet port or over his CAN port. The monitor receives the
forwarded traffic and saves the arrival time into a file.

4.2. EVALUATION 25

For each configuration traffic will be generated with full utilization of
the CAN bus for 10 seconds.

Results

Different values for three bandwidths, three frame sizes, two destination
interfaces, and two different translator programs make 36 experiments.
Figure 4.8 visualizes that amount of results as a violinplot, showing minima,
mean, maxima and the distribution. Lines with "OVS" in the name mark
that the translator program proposed by this work was used.

The most notable result are the big maxima values for mostly the
OVS-cancan-1000kBit/s experiment series, but also the can-eth-1000kbit/s-
payload4 series. Generally the meantime values seem to not vary that much,
with one exception in the OVS-cancan-1000kbit/s-payload8 experiment
series.

26 Tools and Technologies

Figure 4.8: Microbenchmark on a Raspberry Pi 4.

4.2. EVALUATION 27

Inspecting table 4.2.2 a possibly unexpected effect can be seen. The
min values for both translator programs are always negative when sending
from CAN to ethernet. Since a negative time measurement is obviously
not correct an explanation is needed. Since there was no message loss the
measurement needs to be wrong. Having the experimental setup in mind,
the only possible reason to explain this effect is that the software used to log
ethernet traffic is faster than the one used to log CAN traffic, which makes
sense since optimizing ethernet drivers and tools is way more explored and
therefore optimized.

This observation is also very important when analyzing the other obtained
results. Having a most negative value of 0.7 milliseconds shows, that the
measurement accuracy is lower than ± 0.7 milliseconds.

Another critical observation is the mean transmission time of the OVS-
cancan-1000kBit/s-payload8 experimental series with a value of 13.5 mil-
liseconds. The other translator program has a value of 2.8 milliseconds.
Comparing those values the transmission time is nearly two and ten times
higher than in other experimental series. Using canbusload in combination
with cangen showed that the computational strong computers are able to
reach a slightly higher busload when sending on maximal speed. In a real
deployment the busload will never be as high as in the experiments, so this
effect will not be a problem. Nevertheless, it is noticeable that the SDN
optimized solution performs worse than the other.

28 Tools and Technologies

Before starting a deeper analysis of the big maxima values or outliers seen
in figure 4.8, the smaller table 4.2.2 should be watched to analyze the general
behavior. That table shows the time differences between the translator
program without forwarding logic and the proposed SDN optimized one.
Positive values mean that the SDN optimized solution was slower and vice
versa.

In all experimental series, less those having noticeable maxima, the mean
time differences are lower than 0,1 milliseconds. Inspecting the maxima time
differences the SDN optimized solution tendentially might be slower, but
not always. Having the inaccuracies and the randomness of the scheduler
of the OS in mind they perform very similar. Comparing the differences
between the min values would not make sense since the inaccuracy of the
measurement would be too significant.

After excluding the experimental series having noticeable maxima those
still need to be analyzed.

experimental series ∆ MAX (ms) ∆ AVG (ms)
cancan/bitrate250/payload0 -0,3 0,1
cancan/bitrate250/payload4 1,7 0,1
cancan/bitrate250/payload8 1,2 0,1
cancan/bitrate500/payload0 27,8 0,2
cancan/bitrate500/payload4 0,3 0,0
cancan/bitrate500/payload8 1,2 0,0
cancan/bitrate1000/payload0 43,8 0,6
cancan/bitrate1000/payload4 14,0 0,4
cancan/bitrate1000/payload8 9,9 10,7
caneth/bitrate250/payload0 -1,1 0,1
caneth/bitrate250/payload4 -0,1 0,0
caneth/bitrate250/payload8 -0,7 0,1
caneth/bitrate500/payload0 1,5 0,0
caneth/bitrate500/payload4 0,9 0,0
caneth/bitrate500/payload8 1,6 0,0
caneth/bitrate1000/payload0 -1,3 0,0
caneth/bitrate1000/payload4 -9,2 0,0
caneth/bitrate1000/payload8 0,7 0,0

Table 4.3: Time differences between translator programs. Positive values
showing slower processing using the SDN optimized gateway and vice versa.

4.2. EVALUATION 29

experimental series MAX (ms) MIN (ms) AVG (ms)
cancan/bitrate250/payload0 3,4 0,1 1,4
cancan/bitrate250/payload4 1,9 0,4 1,4
cancan/bitrate250/payload8 2,6 0,1 1,4
cancan/bitrate500/payload0 3,0 0,3 1,4
cancan/bitrate500/payload4 3,0 0,2 1,4
cancan/bitrate500/payload8 3,1 0,1 1,4
cancan/bitrate1000/payload0 3,3 0,3 1,4
cancan/bitrate1000/payload4 4,0 0,3 1,5
cancan/bitrate1000/payload8 4,0 1,5 2,8
caneth/bitrate250/payload0 2,4 -0,2 0,3
caneth/bitrate250/payload4 2,4 -0,4 0,3
caneth/bitrate250/payload8 1,9 -0,7 0,3
caneth/bitrate500/payload0 1,4 -0,6 0,4
caneth/bitrate500/payload4 1,4 -0,6 0,4
caneth/bitrate500/payload8 1,5 -0,6 0,3
caneth/bitrate1000/payload0 3,3 -0,7 0,4
caneth/bitrate1000/payload4 14,6 -0,7 0,5
caneth/bitrate1000/payload8 1,0 -0,6 0,4
OVScancan/bitrate250/payload0 3,0 0,3 1,4
OVScancan/bitrate250/payload4 3,7 0,1 1,6
OVScancan/bitrate250/payload8 3,8 0,1 1,6
OVScancan/bitrate500/payload0 30,8 0,1 1,6
OVScancan/bitrate500/payload4 3,3 0,2 1,4
OVScancan/bitrate500/payload8 4,3 0,3 1,5
OVScancan/bitrate1000/payload0 47,2 0,4 2,0
OVScancan/bitrate1000/payload4 18,0 0,4 1,8
OVScancan/bitrate1000/payload8 13,9 2,7 13,5
OVScaneth/bitrate250/payload0 1,3 -0,7 0,4
OVScaneth/bitrate250/payload4 2,3 -0,6 0,4
OVScaneth/bitrate250/payload8 1,3 -0,7 0,3
OVScaneth/bitrate500/payload0 2,8 -0,4 0,4
OVScaneth/bitrate500/payload4 2,3 -0,6 0,3
OVScaneth/bitrate500/payload8 3,1 -0,5 0,3
OVScaneth/bitrate1000/payload0 2,0 -0,6 0,4
OVScaneth/bitrate1000/payload4 5,5 -0,6 0,5
OVScaneth/bitrate1000/payload8 1,7 -0,5 0,5

Table 4.2: Microbenchmark on a Raspberry Pi 4 as table. Also see figure
4.8.

30 Tools and Technologies

Figure 4.9: OVScancan-
bitrate1000payload4

Figure 4.10: OVScancan-
bitrate1000payload0

Figure 4.11: OVScancan-
bitrate500payload0

Figure 4.12: caneth-
bitrate1000payload4

Till here this evaluation mostly excluded the experimental series con-
taining big outliers. With an average transmission time of fewer than two
milliseconds and outliers taking more than 40 milliseconds, they need to
be discussed as well. For better understanding those experimental series
are plotted showing the measured times of each frame transmitted in a
chronological order showed in figures 4.9-4.12. Those figures show that all
the high values were measured only at the beginning of the experiments.
Two possible reasons may explain the behavior.

First, the OS is not a real-time system so possibly the scheduler needs
some time to attain a good schedule and more computational intense tasks
need more effort to achieve a good schedule. Since both translator programs
use the same internal structure and the slow transmission at the beginning

4.2. EVALUATION 31

of experiments happened more frequently in the SDN optimized solution,
general computational cost optimization will very probable soften this effect.

Second, the translator programs use dynamic data structures or more
precise the standard library queue implementation for C++. Since std::queue
"acts as a wrapper to the underlying container" [4] std::dequeue, the behavior
or complexity is defined by the dequeue class. The used operations random
access and the insertion or removal of elements at the end or beginning
have constant complexity. But the fact that the "storage of a deque is
automatically expanded and contracted as needed" [3], might slow down the
translator program after program start since those operations could take
additional time before converging to good buffer size. Using static data
structures would guarantee to never suffer from this effect.

To test those theories a new experiment will be conducted. Depending
on whether the problem becomes significantly smaller or not, the theories
about the cause of the problem can be confirmed or a discussion about how
serious the remaining problem is can be hold. Apart from this problem, the
transmission time is similar to the till now used solution and therefore, fast
enough to be deployed in the experimental setup of the CoRE group.

4.2.3 Microbenchmark Gateway using Hardware 2
Purpose

Like the previous microbenchmark using hardware, this experiment will
evaluate the needed transmission times over the gateway. The main focus
in this experiment is on the slow transmission after starting the translater
program, which is previously discussed in chapter 4.2.2. For possible reasons,
scheduling issues and the use of dynamic data structures were suspected
and therefore, this experiment tries to confirm those theories and determine
how significant the remaining issue would be when deploying the gateway.

Procedure

This experiment is conducted in the same way as the previous one, however,
a possible improvement was made in the used translator program and an
additional parameter is added conducting the experiment. To improve the
translator program the internally used Queue implementation from the C++
standard library was replaced by a Circular Buffer from the Boost library.
To address the scheduling issues, a negative nice value is used starting the
translator program.

32 Tools and Technologies

Results

First, the previous experiment is repeated with the difference of using the
improved translator program. Comparing the resulting figure 4.13 with
figure 4.8 from the previous experiment, the big maxima values are still
present but already significantly lower. Also, the mean transmission time
for the OVS-cancan-1000kBit/s-payload8 experimental series is reduced but
still over 10 milliseconds.

When plotting the measured times in chronological order as done previ-
ously in figures 4.9-4.12 it shows that the big maxima values occur again
at the beginning of the experiments. So the suspected use of dynamic data
structures can not directly be seen as a cause of the slow transmission after
starting the translator program.

Also, the caneth-1000kBit/s-payload4 experimental series did not have
big maxima this time, even though, this experimental series was obtained
by conducting the previous experiment exactly as before, which shows the
effect of randomness.

As the next step the improved translator program was started with a
negative nice value to become prioritized by the scheduler. The resulting
figure 4.14 shows that the big maxima values are not present anymore and
proves the impact of scheduling algorithms.

Since the performance seems to be equal to the translator program used
by the CoRE group, a replacement should be possible and will be tested as
the next experiment. A more detailed analysis of the jitter is not possible
with the accuracy of the measuring devices and would not make sense as
long as the OS is not replaced by a real-time OS.

Typically CAN devices send traffic cyclically, as for example, the actual
angle of a steering wheel in a car. Knowing how many frames are sent in a
whole circle in a concrete setup, would allow to change the size of the used
Circular Buffer and therefore old not needed messages would get overwritten
and not sent. This possibility with a fixed schedule would perform very well
for real-time communication. But with the already achieved results of never
taking more than 6.6 milliseconds and on average less than 2 milliseconds,
the gateway should be performant enough to be deployed in experimental
setups and allow to better investigate about SDN for in-vehicle networks.

4.2. EVALUATION 33

Figure 4.13: Microbenchmark 2 on a Raspberry Pi 4. No additional nice
value.

34 Tools and Technologies

Figure 4.14: Microbenchmark 2 on a Raspberry Pi 4. Negative nice value of
20.

4.2. EVALUATION 35

4.2.4 Deploying the Prototype
Purpose

The previous evaluation confirmed that the proposed gateway solution
has the required performance. Since there is always a difference between
experiments and real deployment, it is necessary to also deploy the gateway
to confirm the functionality. Moreover, the developed prototype needs to be
deployed to contribute to future research of the CoRE research group.

Experimental setup

The research group has a demonstrator car as shown in figure 4.15 and a
table construction behaving as a replica, shown in figure 4.16.

Figure 4.15: The demonstrator car

36 Tools and Technologies

Figure 4.16: The table construction

Figure 4.17: Network topology from the experimental setup

4.2. EVALUATION 37

Procedure

This experiment is split into two parts. First, one gateway was completely
replaced by another Raspberry Pi with the developed gateway software
installed. After confirming the correct behavior, which means that the
resulting traffic is equal to the solution used before, the previously used
setup is reconstructed. Then the developed gateway software was installed
on all gateways. The old gateway software was stopped and the new one
started. When the resulting traffic over the network is equal to the traffic
before replacing the gateway software, the deployment is successful.

To let the developed gateways forward the traffic according to the network
policies, flow-entries representing the desired forwarding behavior needed
to be created and uploaded to the SDN controller. Those flow-entries were
generated with python, using the already existing flow-entries from the
switch br1/1-12 and br2/13-24. For a better overview refer to figure 4.17.

To be able to compare the resulting traffic when changing the gateway
software, a deterministic traffic generation is needed. Therefore saved traffic
files, which were created by dumping the traffic from the demonstrator car
4.15 over 15 minutes, were played. Since log files, saving 15 minutes of traffic,
become very big very fast, the debug output information of the gateway
software was used to monitor the amount of messages sent.

4.2.5 Result
After setting up everything correctly to replace one gateway, the result was
surprising. In case of success it was expected to receive the same amount of
traffic as before, or in case of a failure message loss could occur. Against
expectations, more messages were sent over the network than before.

So the experiment was repeated, but saving traffic logs to analyze them
with python. The expectation that a certain message possibly always got
sent twice or something similar due to wrong configuration, could not be
confirmed. Instead the distribution looked too random to be explained. The
analysis of the log files also showed, that every message was at least sent
as often as in the previously used gateway solution, which means no traffic
loss.

After further experiments and reviewing configuration files the cause
for having too many messages was found. The setup of the CoRE research
group was containing an error. Their used local static configuration for
their gateway solution was outdated and therefore, did not match the

38 Tools and Technologies

network policies correctly. Once the configuration got updated, both gateway
solutions behaved equally.

Replacing all four gateways produced exactly the same output as before,
making the deployment of the developed prototype a success.

Relevant aspects of the
development of the project

5.1 Beginning of the Project
In my home university, HAW Hamburg, several research groups offer in-
teresting topics for a thesis. The group I was personally and technically
interested in is called Communication over Real-Time Ethernet - research
group (CoRE). I contacted the group and they offered me multiple projects
to work on. All projects were related to their actual research project about
the use of SDN for in-vehicle networks for future cars. To investigate they
have a car from Volkswagen as demonstrator, an experimental setup as table
construction reproducing the network traffic of the car, but providing better
interfaces than the car does and a simulation.

My project treats the "problem" that the group already achieved to make
most of the network traffic forwarding decisions via SDN, but not all. Many
devices are still and will stay connected to CAN buses with the need of
CAN-to-ethernet gateways. Their gateways work and the resulting traffic
is already transmitted applying SDN technologies, but the decisions which
CAN frames to translate and forward from the CAN bus into the SDN is
done via static configuration files.

Before thinking together about possible solutions, I needed to get a deep
understanding of these topics, their previous research succeeds and their
actual setup. From all solutions we could think about together, I chose a low
performance but very clean and safe working one. The gateway translates
all CAN frames into ethernet frames and hosts a virtual switch. The switch
component then interacts with the SDN via the OpenFlow protocol to choose

39

40 Relevant aspects of the development of the project

which frames to forward into the existing SDN. Like that the gateway itself
is part of the SDN at the cost to translate many messages unnecessarily.

Having in mind that the low performance might cause that the developed
gateway might not be usable in the end, the objective of this work became
a usability study or analysis of the chosen gateway strategy.

5.2 Lessons Learned

5.2.1 Structural Related
As in the most projects, many mistakes could have been avoided by better
analysis. Since I knew about the importance of analysis, I tried to analyze
everything in detail, but I missed it in certain parts. Meanwhile I did research
a lot about all related technologies and made use of software engineering
strategies, I did miss to analyze the working situation. For me, it was the
first time that my work participated existing work of a group, so I was
also missing the experience of how important it is to analyze properly what
others did already.

For that mistake, I invested a lot of time developing my first gateway
approach without noticing that the existing repository which I had access
to, already proposed solutions for many requirements I solved on my own.
So including my gateway approach to the project repository of the CoRE
group, many parts I invested a lot of time into, especially doing research,
became unnecessary. Similar issues about reading official documentation
about how to set up certain tools and then noticing that the Trac-WiKi
already proposed guides to do what I needed without the need of deep
understanding. Even though this made me use way more time to reach the
same goal, I think it was beneficial for my personal learning progress and
the documentation writing due to better understanding.

Another very time-consuming mistake that would have been avoidable
through better analysis, was to estimate the desired format of the thesis
documents. Instead of directly requesting access to the template, I just
assumed a traditional paper structure and started to work with that wrong
estimation. That led to many hours unnecessarily spent on research, writing
and text changing.

In the project management process, I discovered an important point for
the time planning. This might depend on each person, but for me, it was a
mistake to estimate the needed time for tasks only in hours. I noticed that

5.2. LESSONS LEARNED 41

I was not able to read scientific documents or write documentation for the
same amount of time as I am generally able to work on software development.
So planning to work a whole day on documenting after working several days
on software developing did not accomplish the expected success. Rather
than hours it worked better to measure needed time in objective-oriented
working sessions, independent of how much time each of them takes. For
example, to set the goal of reading two certain papers of a list of papers,
instead of saying to read as many papers as possible within six hours. With
that strategy, the workflow became way more efficient and the progress more
predictable.

5.2.2 Technical Related
Once I decided that the final prototype will be deployed on a Raspberry Pi
the choice of developing for Linux was done. Since I use Windows as OS
for my personal computer I could not simply develop and test the needed
translater software. As solution, I started to use a C++ IDE for Windows
with the idea of compiling and running the software under Windows Linux
Subsystem (WSL). I thought using an IDE under Windows and compiling
it directly under the VM of WSL would be the easiest way. WSL by default
does not provide a full kernel which could have been solved, but made me
change to the use of a conventional VM.

Also the idea of using an IDE for Windows restricted the debug oppor-
tunities since the program could not be run inside the IDE. Additionally
the IDE comfort worsened due to error messages caused by not found li-
brary calls etc. Probably it would have been possible to solve that issue by
installing a cross compiler but this did not appear to be the easiest solution.
Considered as the probably simplest solution, I installed an IDE in the VM.
Developing in an IDE inside a VM, meanwhile all other programs were used
in the host OS felt uncomfortable, so I installed an X11-Server tool on the
host OS Windows. Like that, I was able to use the IDE in the VM having
the GUI of the IDE opened, as if it would be any other program of the host
OS.

Even after such a long way of searching for the optimal workflow, later
on, I had to change the whole setup again. The VM together with the
SDN controller service needed more RAM than my personal computer could
provide to work smoothly. So after that many tries around, I just removed
everything and installed a full Linux OS as dual-boot. Apart of resizing the
partition, this setup could be used till the end of the project.

42 Relevant aspects of the development of the project

Generally, I am still convinced that thinking a lot about finding the
optimal working flow before starting the work is a good idea. As the reason
for the inefficiency and the amount of withdrawn decisions, I suspect missing
experience and knowledge. Due to all things learned in that process in
future projects I would clearly do better.

Another big issue occurred while conducting the second experiment
4.2.2. At that point I used two computers to conduct the experiment. One
computer sent frames to a CAN bus and also read their arrival time and
their arrival time on the destination CAN bus. The other one translated and
forwarded them. The measured times were growing infinitely independent of
which translator implementation or CAN bus configuration I tried. This was
caused by the unexpected behavior of the Linux CAN driver implementation.
When sending and reading from one CAN interface with the same device,
the CAN frames get readable earlier than they are sent. Once finally being
aware of that effect, a third computer was used to generate the traffic and
the experiment generated usable results.

Conclusion and Outlook

The use of real-time ethernet for in-vehicle backbone networks is the subject
of much research. For the gateways, which are necessary to transfer data over
those backbone networks, several approaches are existing and investigated.
This work contributes to the research of using a Software Defined Network
as an ethernet backbone network and investigates the approach of making
the gateway part of the SDN, instead of programming the gateway statically.

As part of this work a strategy to include a CAN ethernet gateway
into an SDN was elaborated. Additionally, a protocol translation strategy
and the according software were implemented. Several evaluations were
performed confirming the potential of the approach. Finally, a prototype
was implemented in hardware and tested in an experimental setup.

The results of this work make it possible to program CAN-ethernet
gateways via standardized SDN-related protocols, such as OpenFlow, in
experimental setups. Here the use of this gateway strategy grants the
gateways all the advantages of SDN, without any disadvantages.

The elaborated strategy to include the gateway into the SDN consists of
translating every CAN frame into ethernet frames and forwarding them to
a virtual switch. Since this work showed that the resulting computational
overhead did not lead to poorer performance in the environments tested, it
is expected that the strategy presented will be used for further research.

Although this work is limited to CAN-Ethernet, the presented approach
can also be implemented for LIN and many other protocols. This increases
the potential of this strategy even further, since all the different domains
and protocols can be controlled via the same interface of the same SDN
controller. Having a central interface to program all components of the

43

44 Conclusion and Outlook

network while benefiting from features like fail-state operations will improve
future research.

Bibliography

[1] Git Community. git –everything is local. www.https://git-scm.com.

[2] Steve Corrigan. Introduction to the controller area network (can). 2002.

[3] cppreference.com. std::dequeue - cppreference.com. https://en.
cppreference.com/w/cpp/container/dequeue.

[4] cppreference.com. std::queue - cppreference.com. https://en.
cppreference.com/w/cpp/container/queue.

[5] Armando Astarloa Cuéllar. Development solution for next generation
ethernet using tsn.

[6] Open Networking Foundation. Open network operating system (onos)
sdn controller for sdn/nfv solutions. https://opennetworking.org/
onos/.

[7] Peter Fussey and George Parisis. Poster: An in-vehicle software defined
network architecture for connected and automated vehicles. In Proceed-
ings of the 2nd ACM International Workshop on Smart, Autonomous,
and Connected Vehicular Systems and Services, CarSys ’17, page 73–74,
New York, NY, USA, 2017. Association for Computing Machinery.

[8] CoRE Research Group. Communication over real-time ethernet group.
https://core.informatik.haw-hamburg.de.

[9] Marco Haeberle, Florian Heimgaertner, Hans Loehr, Naresh Nayak,
Dennis Grewe, Sebastian Schildt, and Michael Menth. Softwarization of
automotive e/e architectures: A software-defined networking approach.
In 2020 IEEE Vehicular Networking Conference (VNC), pages 1–8,
2020.

45

www.https://git-scm.com
https://en.cppreference.com/w/cpp/container/dequeue
https://en.cppreference.com/w/cpp/container/dequeue
https://en.cppreference.com/w/cpp/container/queue
https://en.cppreference.com/w/cpp/container/queue
https://opennetworking.org/onos/
https://opennetworking.org/onos/
https://core.informatik.haw-hamburg.de

46 BIBLIOGRAPHY

[10] International Organization for Standardization. Road vehicles — In-
terchange of digital information — Controller area network (CAN) for
high-speed communication. International Organization for Standardiza-
tion, iso 11898-1:1993 edition, 1993.

[11] International Organization for Standardization. Road vehicles — In-
terchange of digital information — Controller area network (CAN) for
high-speed communication — Amendment 1. International Organization
for Standardization, iso 11898:1993/amd 1:1995 edition, 1995.

[12] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteves Veríssimo,
Christian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uh-
lig. Software-defined networking: A comprehensive survey. Proceedings
of the IEEE, 103(1):14–76, 2015.

[13] Eleftherios Kyriakakis, Maja Lund, Luca Pezzarossa, Jens Sparsø,
and Martin Schoeberl. A time-predictable open-source ttethernet end-
system. Journal of Systems Architecture, 108:101744, 2020.

[14] Marco Di Natale, Haibo Zeng, Paolo Giusto, and Arkadeb Ghosal.
Understanding and Using the Controller Area Network Communication
Protocol. 2012.

[15] Suk-Hyun Seo, Jin-Ho Kim, Sung-Ho Hwang, Key Ho Kwon, and
Jae Wook Jeon. A reliable gateway for in-vehicle networks based on lin,
can, and flexray. ACM Trans. Embed. Comput. Syst., 11(1), April 2012.

[16] trac. Welcome to the trac open source project. https://trac.
edgewall.org/demo-1.4.

[17] Open vSwitch Community. Open vswitch. https://www.openvswitch.
org/.

[18] Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee. A practical wireless
attack on the connected car and security protocol for in-vehicle can.
IEEE Transactions on Intelligent Transportation Systems, 16(2):993–
1006, 2015.

[19] Weiying Zeng, Mohammed A. S. Khalid, and Sazzadur Chowdhury.
In-vehicle networks outlook: Achievements and challenges. IEEE Com-
munications Surveys Tutorials, 18(3):1552–1571, 2016.

[20] Lin Zhao, Feng He, Ershuai Li, and Jun Lu. Comparison of time
sensitive networking (tsn) and ttethernet. In 2018 IEEE/AIAA 37th
Digital Avionics Systems Conference (DASC), pages 1–7, 2018.

https://trac.edgewall.org/demo-1.4
https://trac.edgewall.org/demo-1.4
https://www.openvswitch.org/
https://www.openvswitch.org/

TFG del Grado en Ingeniería
Informática

Developing a CAN Ethernet
Gateway for Software Defined

Networks in Future Cars
Documentación Técnica

Presented by Yunus Ülker
in the Universidad de Burgos — May 25, 2022

Tutor: Juan Jose Rodriguez

Contents

Contents i

List of Figures iii

List of Tables iv

Appendix A A Software Project Plan 1
A.1 Introduction . 1
A.2 Project Management . 1
A.3 Time Management . 3
A.4 Feasibility Study . 5

A.4.1 Costs . 5
A.4.2 Legal Viability . 6

Appendix B Software Requirement Specification 7
B.1 Introduction . 7
B.2 General Objectives . 7
B.3 Software Requirement Catalogue 8

B.3.1 Non-functional Requirements 8
B.3.2 Functional Requirements 9

B.4 Requirement Specification 9
B.4.1 Setting up a Gateway 9
B.4.2 Change Forwarding Rules 10
B.4.3 Protocol Translation 10
B.4.4 Forwarding Traffic 10

Appendix C Design Specification 13
C.1 Introduction . 13

i

ii Contents

C.2 Data model . 13
C.3 Procedural Design . 14
C.4 Architectural Design . 15

Appendix D Technical Programming Documentation 17
D.1 Introduction . 17
D.2 Directory Structure . 19
D.3 Programmer’s Manual . 20

D.3.1 Protocol Translation Strategy, Ethertype ECA1 . . . 20
D.3.2 Translator Program 21
D.3.3 SDN Controller Setup 23
D.3.4 Gateway Setup . 24

D.4 Program Compilation, Installation and Execution 25
D.5 Tests . 27

Appendix E User Manual 29
E.1 Introduction . 29
E.2 Wiki Entry . 30
E.3 Hello World example . 31

Bibliography 35

List of Figures

A.1 Initial WBS . 3
A.2 Final WBS . 4

B.1 Basic idea of this gateway strategy. 8

C.1 UML Sequence Diagram, Receiving a CAN Frame 14
C.2 Example Gateway Architecture. 15

D.1 Shows the Mapping of CAN and Ethernet Frame Fields 20
D.2 Example: A translated CAN Extended Frame as 802.1Q Ethernet

Frame. 21
D.3 Simplified UML Class Diagram from the Translator Program . . 22

E.1 Screenshot of the Wiki Entry 30

iii

List of Tables

A.1 cost table: Micobenchmark Gateway virtual 5
A.2 cost table: Micobenchmark Gateway using Hardware 5
A.3 cost table: Final Prototype Deploy 6

iv

Appendix A

A Software Project Plan

A.1 Introduction
This section mainly focuses on explaining the project management and the
time planning. The used work breakdown-structure for time management
is shown in its initial and final state. Also the resulting costs, including a
legality analysis, for the project are shown and explained.

A.2 Project Management
For all major projects good project management is essential to success. IT
project management is typically broken down into five related stages which
are Initiation, Planning, Execution, Monitor and control, and Closing. The
initiation phase corresponds with the topic and supervisor finding. Planning
is certainly the most important part of the project management process and
is the base for all other stages.

The key to good planning is taking into account as many variables
as possible. Traditional IT project management often suffered from the
mistake of planning too static too far to the future. This is why agile project
management frameworks, e.g Scrum, were gaining more popularity in the
last years. Simply using Scrum would not work since in this particular
project there is no team but only one participant. A specialty about this
project is that it is run as part of a research group offering guidance, support,
and a place for discussions. For the most projects cost planning or resource
and time planning is the main limiting variable. This limitation usually
comes with a fixed goal which needs to be reached at the end of the project.

1

2 Appendix A. A Software Project Plan

This project does not have a limited budget of hours that can maximally
be spent to finish the project, but two possible deadlines. The first would
have been January 2022 and the second June 2022. Consulting the estimation
of the research group leading professor, finishing the project by January
would have been a challenging goal.

Inspired by agile project management concepts and by making use of
not being dependent on a team, I chose to plan the project adaptable to
any changes and tried to not specify deadlines for specific tasks too detailed.
So an ordered list of milestones without fixed dates was used to determine
the progress of the project. To stay agile, those general milestones were set
to be broken down into multiple concrete goals later on. In that way new
information learned in the progress could be directly implemented in the
project and avoid wrong estimations.

To reach those milestones and keep track of the project’s progress, I
split my working time into two different repeating phases, preparing and
working. In the preparing phase I analyzed the recent progress and any
remaining tasks. By breaking down those remaining tasks and possibly
adding new ones, I created a list of goals to complete before the next
preparation phase. Even though this technique is inspired by sprints from
the Scrum framework, it is different since assigning a certain amount of time
is an essential component of a Scrum sprint. When working without a team
I did not see any advantage of assigning time to a sprint duration but a loss
of flexibility and unneeded overhead.

Even if this work has only one participant many meetings were held with
other members of the research group. Very helpful for this project was the
way of communication inside the group. Nearly every day the two group
leading Ph.D. students were available in a Teams room for several hours
and every member was invited to join whenever they want.

Using those schemes till the end of the project makes the closing-stage
trivial since its objectives can be treated equally as any other before.

A
.3.

T
im

e
M

anagem
ent

3
A.3 Time Management
To monitor the progress of the project a work breakdown structure (WBS) was used. As explained in the previous
section the project management was agile and therefore the initial WBS was very empty and is shown in figure A.1.
The WBS grew in the progress of the project and the final state is shown in figure A.2 and gives an overview of the
time management of the whole project.

Figure A.1: Initial WBS

4
A

ppendix
A

.
A

Software
Project

Plan

Figure A.2: Final WBS

A.4. Feasibility Study 5

A.4 Feasibility Study

A.4.1 Costs
To discuss the costs of this project they are split into two categories, personnel
and hard- and software costs. To estimate personnel costs the ECTS points
can be converted into hours to be paid and a salary between 14 and 20 Euro
per hour can be estimated. This calculation formula leads to 5040-7200 €
excluding possible taxes which would depend on other factors like the type
of contract and additional income of the employee.

The experiments were conducted using different hard- and software
setups resulting in different costs. Those are shown separately in cost-tables
having the same names as the corresponding evaluation in the Memoria
document.

All those listed prices refer to the used components and not the cheapest
possible solution to do it. Especially the listed Lab Laptop12 and Per-
sonal Laptop13 could be replaced by cheaper computers. Also replacing
the 6xCAN-1xUSB Adapter9 with two CAN-USB-Adapter11 would make
the setup Microbenchmark Gateway using Hardware A.4.1 cheaper. Those
factors might be interesting to copy the experiment, but in the case of this
work it was irrelevant since all related software and hardware costs were
paid before and independent of this project.

Description Price per Unit VAT Quantity Price
Personal Laptop 13 667,38 € 126,80 € 1 794,18 €
Total cost 794,18 €

Table A.1: cost table: Micobenchmark Gateway virtual

Description Price per Unit VAT Quantity Price
CAN-USB-Adapter 11 180,00 € 34,20 € 3 642,60 €
6xCAN-1xUSB Adapter 9 735,00 € 139,65 € 1 874,65 €
Raspberry Pi10 84,50 € 16,06 € 1 100,56 €
Lab Laptop 12 2.161,96 € 410,77 € 1 2.572,73 €
Personal Laptop 13 667,38 € 126,80 € 1 794,18 €
Total cost 4.984,72 €

Table A.2: cost table: Micobenchmark Gateway using Hardware

6 Appendix A. A Software Project Plan

Description Price per Unit VAT Quantity Price
SDN switch 1 954,00 € 181,26 € 1 1.135,26 €
Switch OS 2 642,99 € 122,17 € 1 765,16 €
Support service for switch OS3 130,21 € 24,74 € 1 154,95 €
NUC mini computer kit 4 234,45 € 44,55 € 4 1.116,00 €
SSD for the NUC 5 23,52 € 4,47 € 4 111,96 €
RAM for the NUC6 26,46 € 5,03 € 4 125,96 €
Network cable 7 5,00 € 0,95 € 10 59,50 €
Power supply cables 8 50 € 950 € 1 59,50 €
6xCAN-1xUSB Adapter 9 735,00 € 139,65 € 1 874,65 €
Raspberry Pi 10 84,50 € 16,06 € 6 603,33 €
CAN-USB-Adapter 11 180,00 € 34,20 € 4 856,89 €
Lab Laptop 12 2.161,96 € 410,77 € 1 2.572,73 €
Personal Laptop 13 667,38 € 126,80 € 1 794,18 €
Total cost 9.229,98 €

Table A.3: cost table: Final Prototype Deploy

A.4.2 Legal Viability
The developed gateway is not and will not be made public. All the used
hard- and software were accessed legally. This work only contributes to
research.

Also it is expected that if companies would use this gateway strategy in
the future, they would implement their own specific hardware with software
developed specifically for their devices.

1Edgecore 24x 1GbE RJ45 SDN Switch (4610-30T-O-AC-F)
2Pica8 PicOS 1GE 24-Port Switch Enterprise Edition Network OS (P-OS-1G-EE-24)
3Support for P-OS-1G-EE-24 (P-OS-1G-EE-24-S1)
4Intel® NUC Kit NUC8i3BEK2, Barebone (NUC8i3BEK2)
5SSD for Intel NUC (HP EX900 120 GB M.2 2280, PCIe 3.0 x4)
6Crucial SO-DIMM 8 GB DDR4-2400
7RJ45 Patch cabel
8Power supply multi socket for 1x Switch, 4x NUC, 6x PI
9IPEH-004062 PCAN-USB X6 CAN-FD D-SUB

10Raspberry PI 4 B 4 GB All-In-Bundle (RPI 4B 4GB ALLIN)
11IPEH-002021 PCAN-USB-Adapter
12ThinkPad P1 P1000
13Asus Zenbook 14 UX430UA

Appendix B

Software Requirement
Specification

B.1 Introduction
This section describes the general goal and which requirements to meet.
Those requirements are divided into functional and non-functional and are
listed separately. In addition to the list of requirements, several requirements
are explained in more detail.

B.2 General Objectives
The general goal is the research, development, and evaluation of a CAN
ethernet gateway with a specialization in the use of SDN technology. More
specifically, the forwarding logic is not intended to be part of the gateway
itself and instead becomes part of an SDN controller, as shown in figure B.1.

7

8 Appendix B. Software Requirement Specification

Figure B.1: Basic idea of this gateway strategy.

If these SDN optimized gateways perform well enough, they will replace
the gateways used in the experimental setup used by the CoRE research
group, allowing them to continue the research of this work. Developing a
gateway with the aim of deploying it in a car would lead to a huge amount
of requirements, but developing a prototype for research purposes does need
not fulfil most of them. However analyzing characteristics, behavior and
potential upgrades becomes a requirement instead.

B.3 Software Requirement Catalogue

B.3.1 Non-functional Requirements

• No packet loss in the gateway.

• Similar latency to the existing solution used by the CoRE group.

• To allow the gateway to connect CAN buses with an ethernet network,
those networks are needed first of all.

B.4. Requirement Specification 9

• Also, the gateway needs to be connected to both networks.

• Since CAN ports are rare to find in computers, additional CAN to
USB adapters might be necessary.

• The gateway forwarding behavior is defined by an SDN controller,
which itself is not part of the gateway. So an SDN controller needs to
be reachable via the connected ethernet network.

• Having terminal access with root rights on the gateway is necessary.

B.3.2 Functional Requirements

• Change forwarding rules
What is special about this gateway is the possibility to change the
forwarding rules at runtime via the interfaces provided by the chosen
SDN controller.

• Protocol translation
Sending CAN frames using the ethernet protocol requires a bidirec-
tional translation strategy.

• Forwarding traffic
When receiving traffic the gateway needs to act according to the
forwarding rules. Depending on the receiver and sender interface
Protocol translation might have to be applied.

• Multicast forwarding needs to be supported.

B.4 Requirement Specification

B.4.1 Setting up a Gateway
Terminal access with root rights is required. The gateway needs to be
connected physically to the ethernet network and minimum one CAN bus.
According to the individual network configuration, the ethernet port might
need to be configured with a certain IP to be able to communicate with the
SDN controller. For the connection to the CAN bus probably additional
hardware and possibly additional drivers need to be installed. Also the CAN
interface needs to be configured with the same bitrate as the other devices
connected to that bus.

10 Appendix B. Software Requirement Specification

For each connected CAN bus it is necessary to create virtual ethernet
pair links, with one port to be used from the virtual switch and one from
the translator program. To do so it is required to install and use the Open
vSwitch software to create a virtual switch in the gateway. How to create
virtual ethernet pair links and how to create and configure a virtual switch
using Open vSwitch is briefly described in chapter D.3.4 and chapter D.4.

The translator program needs to be compiled once, and executed for each
connected CAN bus with parameters according to the network configuration,
including the custom source MAC that the gateway should use when sending
traffic over ethernet, and which ports to use for CAN and ethernet.

B.4.2 Change Forwarding Rules
The use of an OpenFlow supporting virtual switch for forwarding decisions
makes the forwarding behavior of the gateway act accordingly to the Open-
Flow standard. When choosing ONOS as the SDN controller, as in the
experimental setup used for this work, there are three different interfaces
available to communicate with the controller, which are a command-line
interface (CLI), a REST API, and self-developed network applications with
the possibility to provide a graphical user interface.

B.4.3 Protocol Translation
Ethernet frames have a field called ethertype exposing the encapsulated
protocol. This field is set to CA01 to mark that the frames are representing
CAN frames. How to write or read CA01 typed frames is explained in
Technical Programming Documentation D.3.1.

B.4.4 Forwarding Traffic
The obvious problem is that in the context of CAN there are no SDN
solutions available. To still make use of SDN each CAN interface is mirrored
on a virtual ethernet interface. For those ethernet interfaces SDN solutions
can be applied.

To do so the translating instances translate any CAN frame and send
them to their connected virtual ethernet interface and the other way around.
These frames arrive at the virtual switch as any other ethernet frame
would, and the switch is able to forward them according to its configuration.
Dropping those frames or sending them over the ethernet port into the
in-vehicle network is trivial. If the switch instead forwards them to a virtual

B.4. Requirement Specification 11

ethernet interface, the belonging translator instance will translate them back
into CAN frames and send them on their according CAN interface.

This strategy makes the gateway work completely according to SDN
policies for CAN and ethernet traffic.

Appendix C

Design Specification

C.1 Introduction

This section briefly describes how the gateway works. Therefore possible
forms of data presentations are mentioned. The procedures and the archi-
tecture are explained using figures. More details are provided in section D.
A basic knowledge about Software Defined Networking and the OpenFlow
protocol are assumed.

C.2 Data model

One gateway consists of one virtual switch, translating units, and network
interfaces. As a virtual switch, Open vSwitch is used. In the scope of
this work only the switches user interfaces are used, without knowledge
about how the data is represented internally. The network interfaces need
to be created according to the individual network configuration and the
translating units only have a few starting parameters which depend on the
individual network configuration. In most cases forwarding rules take the
biggest amount of data. In this work, they are represented by OpenFlow
flow-entries formatted as JSON or generated via ONOS applications.

For the network configuration any form of documentation can be used.
The experimental setup of the in-vehicle network is documented using
TRAC on a private website, meanwhile for small experimental setups a
simple textfile was used.

13

14 Appendix C. Design Specification

C.3 Procedural Design
Before a gateway can be used its architecture needs to be set up. Therefore
one Open vSwitch instance needs to be started. For each connected CAN
bus one virtual ethernet link, accessible via a pair of virtual interfaces, needs
to be created. Those links are used to connect translator instances and the
virtual switch. The switch needs to be configured to be able to communicate
with the SDN controller of the network. A translating instance needs to be
started for each CAN bus.

Figure C.1 visualizes the message flow of an incoming CAN frame on a
gateway with two CAN buses connected. The used topology to is shown
and explained in the next section C.4.

Figure C.1: UML Sequence Diagram, Receiving a CAN Frame

Once everything is set up every CAN frame received on a CAN bus
will be translated into an ethernet frame and will be sent to the CAN bus
according virtual ethernet link. The switch will receive those and check
which are meant to be forwarded or not and do so. If the switch forwards

C.4. Architectural Design 15

frames to a virtual ethernet link the corresponding translating instance will
receive, translate and forward the traffic to the CAN bus. Dropping or
forwarding frames over a nonvirtual ethernet interface behaves as usual.

C.4 Architectural Design
The amount of CAN buses connected to a gateway determines its architecture.
The choice of how many CAN buses to connect depends mainly on the
personal network setup, but also the availability of physical interfaces.
The architecture of a gateway unit with two CAN buses connected is
demonstrated in figure C.2.

Figure C.2: Example Gateway Architecture.

For each CAN bus connected, a translator instance needs to be started.
To allow the translator instances to communicate with the virtual switch a
virtual ethernet link needs to be created. One virtual ethernet link consists
of two virtual interfaces. One needs to be used by the virtual switch and
one by a translator instance.

The translator units and their internal architecture are explained in
section D.3.2. Summarized the translator program interprets the command

16 Appendix C. Design Specification

line arguments to know which interfaces to use and to obtain some other
information. Then six threads are started with three for each direction of
translating. One thread to send, one to receive, and one for the protocol
translation itself.

Appendix D

Technical Programming
Documentation

D.1 Introduction

In this section the submitted files within their directory structure are briefly
described. The protocol translation is explained in detail. Also, an explana-
tion to compile and start the developed gateway software is proposed with an
additional UML class diagram and an introduction for a fast understanding
of the source code. Basic introductions on how to set up the virtual switch
software and possibly an SDN controller are provided.

17

18 Appendix D. Technical Programming Documentation

D.2. Directory Structure 19

D.2 Directory Structure
Root directory

Thesis

memoria.pdf

annex.pdf

canbusGatewayC++ Source code project directory

CMakeList.txt
src

def

raw_direct

L2DirectCanEthGW.cpp

L2DirectCanEthGW.h
L2DirectEthCanGW.cpp

L2DirectEthCanGW.h
others

util

CircularBufferQueue.h
ConcurrentQueue.h
IQueue.h
IThreaded.h
others

someip

raw

BaseGateway.h

Scripts

Bash scripts

utils Many small scripts

helloworld.sh See E.3
virtualbenchmark.sh Used for experiment virtual benchmark

laborBenchmark.sh Used for experiment prototype benchmark

PythonScripts Used to generate flow-rules, plots and to analyze traffic logs

20 Appendix D. Technical Programming Documentation

D.3 Programmer’s Manual

D.3.1 Protocol Translation Strategy, Ethertype
ECA1

As mentioned in the theoretical concepts chapter Controller Area Network
in the Memoria document, CAN supports extended and basic frames. Figure
D.1 shows the different fields of an ethernet 802.1Q, a CAN basic and a
CAN extended frame. The color scheme, that is used to highlight fields, is
helpful to understand which fields are mapped into which.

Figure D.1: Shows the Mapping of CAN and Ethernet Frame Fields

The destination MAC field is used to represent the CAN identifier. The
identifier is stored in the last four octets of the destination MAC. The MSB
of those four octets is used as a flag to show if this ethernet frame represents
an extended or a basic frame. So that MSB corresponds with the SRR bit
of a CAN frame. The first octet of the destination MAC is always set to
0xFF and the second to 0x00. Setting the two least significant bits in the
first octet marks the frame as a multicast frame and shows that the MAC
address is self-chosen. Apart from those two bits the chosen 0xFF00 for the
first two octets of the destination MAC were freely chosen.

The source MAC field is used to represent on which CAN bus the frame
was received originally. The source MAC field can be freely chosen, but
needs to accord to the network policies. It is recommended to set the second
least significant bits in the first octet, to show that it is a self-chosen MAC.

The ethertype is set to 0x8100 which means that this frame is a 802.1Q
frame. The priority field is the identifier divided by 256 with a maximum
of 7. This formula to set priorities may be changed in the future. The
802.1Q-ethertype field is set to 0xECA1 to mark that the frame accords
with the translation strategy explained here.

In the data field the first three bytes are 0. The fourth byte corresponds
to the length field of a CAN frame. Depending on that value 0-8 bytes
follow representing the data field of the CAN frame.

D.3. Programmer’s Manual 21

An example of a CAN frame translated as ethernet frame is shown if
figure D.2.

Figure D.2: Example: A translated CAN Extended Frame as 802.1Q Ether-
net Frame.

D.3.2 Translator Program
For version control the private git repository of the CoRE research group
is used. Since the software is part of the research group and is not meant
to be published, only a snapshot of the project is part of the submission.
The project is developed in C++ and can easily be imported due to the
provided CMake project file.

The main method as the entry point of the translator program reads
and parses command-line arguments. Then it creates two IThreaded ob-
jects. In this project plenty classes implement this interface, but to use the
translating strategy proposed by this work L2DirectCanEthernetGW and
L2DirectEthernetCanGW objects are created. Which two IThreaded objects
to create depends on the command line argument -m –mapping. Since the
different mapping strategies have a lot in common they inherit from an
abstract class BaseGateway which implements the IThreaded interface.

All important classes and their relations can be seen in figure D.3.

22
A

ppendix
D

.
TechnicalProgram

m
ing

D
ocum

entation

Figure D.3: Simplified UML Class Diagram from the Translator Program

D.3. Programmer’s Manual 23

The IThreaded interface provides the thread typical methods start, stop,
and join. Upon starting, the BaseGateway opens sockets to the given
interfaces, creates buffers, and starts three threads. One to receive frames,
one to transform and filter, and one to send them. The threads communicate
using shared memory and concepts of synchronization as mutexes and
condition variables. One buffer is holding the incoming frames and one the
outgoing. Both buffers work as queues using the ConcurrentQueue class.
The ConcurrentQueue class is a wrapper of the queue class from the C++
standard library extending it with thread synchronization concepts.

As discussed in the evaluation chapter in the Memoria document, perfor-
mance optimizations were required and therefore the ConcurentQueue class
was replaced by the CircularBufferQueue class which internally uses the cir-
cular_buffer from the boost library. To allow the L2DirectCanEthernetGW
and L2DirectEthernetCanGW classes to simply replace the ConcurentQueue
buffers with a CircularBufferQueue buffer, a new interface IQueue was
created with both queue classes inheriting from it. A UML class diagram
showing the classes and their relations in a simplified way is shown in figure
D.3

D.3.3 SDN Controller Setup
The setup depends on the chosen SDN controller which should provide
documentation. For this work ONOS was used as SDN controller offering
three different interfaces. A command-line interface, a graphical interface,
and a REST API. It is also possible to develop and activate an SDN
application to perform actions. Two examples to add flow-entries to a
virtual switch are provided below. The first example shows how to upload
JSON-formatted flows via the REST API from ONOS using curl. The
second example does not use a real SDN controller and instead creates one
flow-entry manually on the virtual switch.

Listing D.1: Example to upload json-formatted flows via the ONOS REST-
API
sudo apt i n s t a l l c u r l
c u r l −−user kara f : ka ra f −X POST −−header ’ Content−Type : \
app l i c a t i o n / j son ’ −−header ’ Accept : ␣ app l i c a t i o n / j son ’ −d \
@/home/<username>/<path−to− f i l e >/<f l owru l e− f i l e >. j son \
’ http ://<ONOS−SDN−Contro l l e r−IP>:\
<ONOS−SDN−Contro l l e r−Port>/onos/v1/ f l ows ’

24 Appendix D. Technical Programming Documentation

Listing D.2: Example to create a flow entry manually on a OVS virtual
switch.
sudo ovs−o f c t l add−f l ow <switchname> in_port=2, \
eth_type=0xeca1 , a c t i on s=output : 1 , output : 4

D.3.4 Gateway Setup
Before starting, terminal access to the gateway is required. Therefore a
keyboard and a monitor can be connected to the gateway directly or, as
done in this work, a SHH connection can be used. In the experimental setup
used for this work the gateway has two network interfaces. The ethernet
interface is used for the in-vehicle network and a WLAN interface is used for
the SSH connection. To conduct certain experiments automatically, an SSH
connection is necessary because commands need to be executed on different
devices. In this work, the WLAN connection was also used to download the
translator program, etc.

The first steps are related to the virtual switch software Open vSwitch
which is very well documented. Open vSwitch needs to be started which
happens automatically when having it installed as a service. A bridge,
which is one switch instance, needs to be created within the virtual switch.
The bridge needs to be configured with a network-wide unique datapath-id
according to the network configuration. Also the switch needs to know to
which SDN controller to connect and optionally which southbound APIs to
support. Finally the switch needs to be enabled by the operating system.
To show an exemplary way of doing this a code snippet of one of the used
bash scripts is shown.

Listing D.3: Example configuration of a virtual switch
#e . g . $1=br1 , $2=0000000000000002
ovs−v s c t l add−br $1 \
−− set br idge $1 other−c on f i g : datapath−id=$2 \
−− set br idge $1 p r o t o c o l s=OpenFlow13 \
−− set−c o n t r o l l e r $1 tcp : $ c o n t r o l l e r
ip l i n k set dev $1 up

To enable the CAN buses the used bitrate needs to be set. Different
bitrates are supported as long as all connected devices are configured with
the same value. To set up the CAN buses with a bitrate of 500 kbit/s, as
applied in the in-vehicle network, the following command can be used.

D.4. Program Compilation, Installation and Execution 25

Listing D.4: Example of configuring a CAN bus
#e . g . $1=can0
ip l i n k add dev $1 type can b i t r a t e 500000
ip l i n k set dev $1 up

For each connected CAN bus it is necessary to create a pair of virtual
ethernet interfaces. One interface needs to be connected to the switch and
one to the translation instance. When connecting an interface to the switch
it is important to assign an OpenFlow-port, since the host-given names for
interfaces are ignored by OpenFlow, and being aware of the port identifiers
is necessary for the network configuration. Again, a bash script snippet as
an example is provided.

Listing D.5: Example adding virtual and non-virtual links to the virtual
switch
#e . g . $1=br0 ; $2=veth0 , $3=vETH0, $4=eth0
ip l i n k add $2 type veth peer name $3
ip l i n k set dev $2 up
ip l i n k set dev $3 up
ovs−v s c t l add−port $1 $2 −− set i n t e r f a c e $2 \

o fpor t_reques t=111 #veth −> goes to a CAN bus
ovs−v s c t l add−port $1 $4 −− set i n t e r f a c e $4 \

o fpor t_reques t=222 #r e a l e t h e rne t

As the last step, the translating instances need to be started. For each
CAN bus one instance needs to be started. When executing without or
with invalid parameters a usage message is returned. The parameters which
need to be set are -m –mapping, -c –caninterface, -e –ethinterface and -s
–sourcemac. For the mapping l2_direct needs to be passed as an argument.
For sourcemac, CAN and ethernet interfaces arguments according to the own
network configuration needs to be passed, and depending on the permission
configuration it is likely that superuser rights are required.

D.4 Program Compilation, Installation and
Execution

The translator only needs to be compiled and started. To do so the project
provides a CMake project file. So any CMake supporting IDE or any C++
compiler in combination with CMake as terminal program will be fine. The
software was developed for Linux distributions and is not supported for

26 Appendix D. Technical Programming Documentation

different OS. As mentioned in the CMake-file nlohmann_json and libboost
are required libraries.

Listing D.6: Commands to compile the gateway project
sudo apt i n s t a l l nlohmann−j son3−dev
sudo apt i n s t a l l l i bboo s t−a l l −dev
cmake .
cmake −−bu i ld .

The virtual switch software OVS is necessary for this approach. To install
the guide from https://docs.openvswitch.org/en/latest/intro/install/[1] can
be followed. There are two options, installing it from binaries or building
from source. In this work the software was built from source using v2.7.0.
The following commands will install dependencies which are not installed
by default on many Linux distributions and then download, compile and
install Open vSwitch. The commands are tested using Ubuntu and could
vary on the used package repositories.

Listing D.7: Commands to compile and install Open vSwitch, including
dependecies
sudo apt i n s t a l l autoconf2 . 64
sudo apt i n s t a l l automake1 .11
sudo apt i n s t a l l l i b t o o l −bin
sudo apt i n s t a l l gcc
dependencies i n s t a l l e d
g i t c l one https : // github . com/openvswitch /ovs . g i t
g i t checkout v2 . 7 . 0
cd ovs /
. / boot . sh
. / c on f i gu r e
make
sudo make i n s t a l l
compi led and i n s t a l l e d , not s t a r t e d ye t

To be able to use OVS it is necessary to start the software. This can be
done by configuring it as a system service or by starting it manually using
the following commands.

Listing D.8: Commands to start Open vSwitch
sudo su
export PATH=$PATH:/ usr / local / share / openvswitch / s c r i p t s
ovs−c t l s t a r t

D.5. Tests 27

exit

D.5 Tests
The testing process can be split into different phases. For functionality
small pure virtual networks were used with network traffic generated using
the command line. Those tests were used to confirm functionality in the
developing process but the obtained results are just a self-validation and
therefore not discussed in this document. This strategy was used to develop
the translator program, to develop ONOS SDN applications, create flow-rule
files, create scripts to upload those via the REST API and to configure the
virtual switches.

With the functionality tested, the performance of the gateway was
evaluated. The obtained results and the setup-details are documented in
the Memoria document. Summarized, this test or experiment confirmed
that the gateway approach could be used in real-time environments.

As the next step, less computational strong and therefore more realistic
hardware was used to analyze timing behavior. To do so a Raspberry Pi as
an embedded computer was used instead of a laptop. The Raspberry Pi was
also connected to real CAN buses and real ethernet ports. One additional
computer was used to generate traffic on the CAN bus and another computer
to measure. The obtained results and the setup details are documented in
detail in the Memoria document. To better analyze if the gateway could
be permanently deployed in experimental setups, the measurements were
done for many different configurations. To achieve this, a script executing
commands on the sending computer, the measuring computer, and the
gateway itself was used. Summarized, the gateway achieved to transmit
traffic on maximal utilization for all possible CAN bandwidth configurations
without loss and it was possible to determine time upper bounds.

Even though it was possible to determine time upper bounds, the previous
experiment also showed that the forwarding process was slower than in the
first experiment and grew when sending with higher bandwidth. This
conclusion gave the motivation for speed optimization of the translator
program and therefore a repetition of the second experiment.

The result of the improvements are shown in detail in in the Memoria
document and can be seen as a success.

As a final test, the gateway was used to replace the existing gateway
solution in the experimental setup used by the CoRE research group. First

28 Appendix D. Technical Programming Documentation

one and then all of the used four gateways were replaced. Doing that, network
configuration issues showed up and needed to be fixed first. Having one
gateway successfully replaced, replacing the missing three worked without
complications.

All the tests or experiments are documented in detail in the evaluation
section in the Memoria document.

Appendix E

User Manual

E.1 Introduction
This work is about developing a gateway and not about user software. When
an administrator sets the network and the gateway up correctly no further
actions will be necessary.

A possible scenario having a user could be a mechanic with the need of
reading all or certain CAN messages for control purposes. Therefore the
administrator could preconfigure interfaces, which depend on the choice of
which SDN controller is used. For example with ONOS as SDN controller, it
is possible to create a graphical user interface which could be used to forward
all the traffic to a certain device. For real deployment in a car, several
security mechanisms would be needed to assure that a possible attacker
would not be able to achieve the same. Having that in mind it is even more
understandable that there are no "users" for the presented work.

29

30
A

ppendix
E.

U
ser

M
anual

E.2 Wiki Entry
This work serves a research group and therefore I was asked to create a wiki entry for other members of the group.
Strictly speaking, these group members are not end users and the entry is mostly in German, but I think it might be
interesting to see anyway.

Figure E.1: Screenshot of the Wiki Entry

E.3. Hello World example 31

E.3 Hello World example
As explained above there are no real users, but a little starting help could
be helpful to start the developed software and "play around a little bit". To
do so with the lowest amount of effort this helloworld.sh can be used.

It installs and starts the needed software. It also creates a virtual switch,
two virtual CAN interfaces and virtual ethernet links to connect them via
the virtual switch. Then it configures the switch with a flow-rule and starts
two translator instances. At the end of the script, software to monitor CAN
traffic is started and some sample messages are sent. However, for better
understanding, it is recommended to generate and monitor additional traffic
after running the script.

sudo apt i n s t a l l autoconf2 . 64
sudo apt i n s t a l l automake1 .11
sudo apt i n s t a l l l i b t o o l −bin
sudo apt i n s t a l l gcc
sudo apt i n s t a l l can−u t i l s
sudo apt i n s t a l l gnome−t e rmina l
sudo apt i n s t a l l nlohmann−j son3−dev
sudo apt i n s t a l l l i bboo s t−a l l −dev
dependencies i n s t a l l e d

g i t c l one https : // github . com/openvswitch /ovs . g i t
g i t checkout v2 . 7 . 0
cd . / ovs /
. / boot . sh
. / c on f i gu r e
make
sudo make i n s t a l l −j 4
sudo / sb in /modprobe openvswitch
OVS compiled and i n s t a l l e d

export PATH=$PATH:/ usr / local / share / openvswitch / s c r i p t s
sudo env PATH=$PATH ovs−c t l s t a r t
#OVS s t a r t e d

sudo ip l i n k add dev veth1 type veth peer name vETH1
sudo ip l i n k set dev veth1 up
sudo ip l i n k set dev vETH1 up
sudo ip l i n k add dev veth2 type veth peer name vETH2

32 Appendix E. User Manual

sudo ip l i n k set dev veth2 up
sudo ip l i n k set dev vETH2 up
#2x v i r t u a l e th crea t ed and enab led

sudo ip l i n k add dev vcan1 type vcan
sudo ip l i n k set dev vcan1 up
sudo ip l i n k add dev vcan2 type vcan
sudo ip l i n k set dev vcan2 up
#2x v i r t u a l can crea t ed and enab led

sudo ovs−v s c t l add−br br1
sudo ovs−v s c t l add−port br1 vETH1 −− set i n t e r f a c e vETH1 \

ofpor t_reques t=1
sudo ovs−v s c t l add−port br1 vETH2 −− set i n t e r f a c e vETH2 \

ofpor t_reques t=2
sudo ip l i n k set dev br1 up
#vETH1 and vETH2 connected to the enab led v i r t u a l sw i t ch
#(no SDN c o n t r o l l e r connected) − we crea t e one f l ow manually

sudo ovs−o f c t l del−f l ows br1 #d e l e t e o l d e n t r i e s (i f e x i s t i n g)
sudo ovs−o f c t l add−f l ow br1 in_port=1, eth_type=0xeca1 , \

a c t i on s=output : 2
#f low entry manually added
#(i f e t h e r t y p e=0xeca1 and IN_PORT=1 then forward to vETH2)

cd . . / . . / canbusGatewayC++/ #<root f o l d e r o f gateway sof tware >
cmake .
cmake −−bu i ld .
#gateway so f tware compi led

sudo . / canbusGatewayC__ −m l2_d i r e c t −e \
veth1 −c vcan1 −s 0x1234&

sudo . / canbusGatewayC__ −m l2_d i r e c t −e \
veth2 −c vcan2 −s 0x2222&

#gateway so f tware s t a r t e d (two t e rmina l s needed)

gnome−t e rmina l −− candump vcan1 #own termina l
gnome−t e rmina l −− candump vcan2 #own termina l
#use wireshark tcpdump or any o ther t o o l to monitor
the e t h e rne t i n t e r f a c e s
#monitoring so f tware s t a r t e d

E.3. Hello World example 33

cansend vcan1 123#C1C2AAAA
#both candump−t e rmina l s show C1C2AAAA

cansend vcan2 222#C2BBBB
#only candump2−t e rmina l shows C2BBBB

sudo p k i l l canbusGatewayC_
#k i l l i n g the gateway proce s s e s
cansend vcan1 123#C1CCCC
#only candump1−t e rmina l show C1CCCC

#experiment , e . g . sudo ovs−o f c t l dump−f l ow s br1

Bibliography

[1] Linux Foundation. Installing open vswitch. https://docs.
openvswitch.org/en/latest/intro/install/.

35

https://docs.openvswitch.org/en/latest/intro/install/
https://docs.openvswitch.org/en/latest/intro/install/

	Contents
	List of Figures
	List of Tables
	Introduction
	Project Objectives
	Theoretical Concepts
	Controller Area Network
	Real-time Ethernet
	Security for In-Vehicle Networks
	Software Defined Networking
	Gateway
	Concept of the Approach of this Work

	Tools and Technologies
	Setup and Implementation
	Open Network Operating System (ONOS)
	Open vSwitch (OVS)
	cURL
	ip command from iproute2
	Sockets
	can-utils
	tcpdump
	Python
	Bash scripts
	Git
	Trac
	Microsoft Teams

	Evaluation
	Microbenchmark Gateway Virtual
	Microbenchmark Gateway using Hardware 1
	Microbenchmark Gateway using Hardware 2
	Deploying the Prototype
	Result

	Relevant aspects of the development of the project
	Beginning of the Project
	Lessons Learned
	Structural Related
	Technical Related

	Conclusion and Outlook
	Bibliography
	Contents
	List of Figures
	List of Tables
	A Software Project Plan
	Introduction
	Project Management
	Time Management
	Feasibility Study
	Costs
	Legal Viability

	Software Requirement Specification
	Introduction
	General Objectives
	Software Requirement Catalogue
	Non-functional Requirements
	Functional Requirements

	Requirement Specification
	Setting up a Gateway
	Change Forwarding Rules
	Protocol Translation
	Forwarding Traffic

	Design Specification
	Introduction
	Data model
	Procedural Design
	Architectural Design

	Technical Programming Documentation
	Introduction
	Directory Structure
	Programmer’s Manual
	Protocol Translation Strategy, Ethertype ECA1
	Translator Program
	SDN Controller Setup
	Gateway Setup

	Program Compilation, Installation and Execution
	Tests

	User Manual
	Introduction
	Wiki Entry
	Hello World example

	Bibliography

		2022-06-06T16:51:51+0200
	RODRIGUEZ DIEZ JUAN JOSE - 13793710N

