
Software-Defined Networks Supporting
Time-Sensitive In-Vehicular Communication
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Abstract—Future in-vehicular networks will be based on
Ethernet. The IEEE Time-Sensitive Networking (TSN) is a
promising candidate to satisfy real-time requirements in future
car communication. Software-Defined Networking (SDN) extends
the Ethernet control plane with a programming option that can
add much value to the resilience, security, and adaptivity of the
automotive environment. In this work, we derive a first concept
for combining Software-Defined Networking with Time-Sensitive
Networking along with an initial evaluation. Our measurements
are performed via a simulation that investigates whether an SDN
architecture is suitable for time-critical applications in the car.
Our findings indicate that the control overhead of SDN can be
added without a delay penalty for the TSN traffic when protocols
are mapped properly.

Index Terms—In-Car Networks, TSN, SDN, Real-Time Ether-
net, Performance Evaluation

I. INTRODUCTION

Over the past years, Ethernet has emerged as the next high
bandwidth communication technology for in-car networks [1].
There were several attempts to introduce support for real-time
requirements of which the IEEE collection of standards for
Time-Sensitive Networking (TSN) [2] is the most promising.
The use of Ethernet in automotive networks enables the
adoption of multiple standards from the internet domain, such
as the internet protocols and transport protocols.
An emerging trend in Ethernet networks is Software-Defined
Networking (SDN). SDN has proven especially useful in well-
known local area networks such as data centers, as it decreases
the complexity and management effort [3]. The basic approach
of SDN is to replace the switches with simple forwarding
devices and connect them to a logically centralised intelligent
network controller [4]. This allows the execution of complex
flow-based forwarding rules in simple and inexpensive devices.
In the automotive environment SDN could provide benefits re-
garding safety, robustness, security, cost efficiency, and future-
readiness with easily updatable network devices.

In this paper, we analyse the integration of TSN and SDN to
Time-Sensitive Software-Defined Networking (TSSDN) for in-
vehicular networks and explore its potentials and expectations.
We contribute a mapping for deploying time-sensitive traffic in
TSSDN switches and describe our methodology of registering
time-sensitive flows with OpenFlow. We implement and eval-
uate this architecture in OMNeT++, a common event-based
network simulation environment and conduct first evaluations
on the real-time capabilities. Overall, we show that time-

sensitive traffic performance remains unaltered when adding
SDN control logic.

This paper is structured as follows. Section II provides
background knowledge and gives an overview on related work.
The potentials and expectations of TSSDN are analysed in
Section III. Section IV describes the evolution of the switch
architecture to TSSDN switches and how time-sensitive flows
can be implemented with OpenFlow. In Section V a case study
is conducted showing the real-time capability of the presented
TSSDN concept. Finally, Section VI concludes this work and
gives an outlook on future work.

II. BACKGROUND & RELATED WORK

TSN is a set of standards which are defined by the TSN task
group [5] of the IEEE. IEEE 802.1Q-2018 [2] extends Ethernet
with the ability to forward concurrent real-time- and cross-
traffic. For supporting a wide range of Quality-of-Service
(QoS) requirements, TSN supports several real-time traffic
classes. These can be synchronous (Time Division Multiple
Access (TDMA)) or asynchronous such as TSNs predecessor
Audio Video Bridging (AVB), which we analysed in former
work [6]. The draft IEEE P802.1Qcc is an amendment to
the TSN standards and provides enhancements to the Stream
Reservation Protocol (SRP). Besides performance improve-
ments, the draft introduces a controller for central network
management. However, this controller is only a centralised
configuration unit. It neither specifies a vendor neutral stan-
dardised interface between the controller and the switches, nor
extracts the control plane functionality of the network devices.

SDN enables a standardised configuration of forwarding de-
vices by an OpenFlow controller, by separating the control and
data plane of the network devices [4]. Kreutz et al. describe
the paradigms and concepts of SDN in their comprehensive
survey [3]. The network logic is split into three layers: (1) The
data plane on which each switch forwards packets according to
flow rules, (2) the control plane on which each switch is con-
nected to a logically (not necessarily physically) centralised
controller that manages the forwarding logic, and (3) the
management plane on which network administrators manage
the controller applications. The communication between the
SDN controller and the switches is specified in the OpenFlow
standard of the ONF [7].

Thiele & Ernst [8] show by formal analysis that the concept
of SDN is generally suitable for real-time environments, espe-
cially if the flows are implemented in all switches prior to the



data exchange. They derive possible worst case boundaries for
network configuration latency and deem SDN applicable for
admission control and fault recovery in automotive networks.
As the network requirements of the Industrial Automation (IA)
are similar to in-car networks, research in this area can often
be transferred directly to vehicles. First efforts to create a real-
time capable SDN have been taken in the IA. Herlich et al.
present the idea of a real-time Ethernet SDN [9] and show
typical use cases for IA networks as a proof of concept. Some
of these use cases are directly related to in-vehicular networks,
for instance supporting arbitrary network topologies, central
and dynamic network (re-)configurations, and fast fail-over
mechanisms at network level.
Nayak et al. [10] contribute research regarding robustness and
reconfiguration in IA networks by using exclusive links for
real-time traffic. They go one step further in developing a
Time-Sensitive Software-Defined Network with a scheduling
process for time-triggered traffic [11]. However, the schedule
is not programmed into the switches, but instead the hosts in
the network know the full schedule and send data in their time
slots. The switches are not real-time capable and unscheduled
cross traffic could change the network behaviour.
Kobzan et al. share their concepts of software-defined net-
works for the production plants of the future in the FlexSi-
Pro research project [12]. They evaluate the combination of
TSN and SDN for IA and declare the central configuration of
real-time traffic with SDN as an open research task.

Fussey and Parisis summarised the advantages and dis-
advantages of using SDN in vehicles focusing on enabled
features [13]. We expand this list focusing on real-time ca-
pabilities and benefits that SDN can have on TSN.
Halba et al. use SDN for data interoperability and robustness
in the in-vehicular network and thus, substantiate the benefit
of SDN for in-car networks. They show SDN controller
applications implementing robustness and safety with fast fail-
over mechanisms [14]. However, they do not consider real-
time requirements in their network design.

As shown above, there were already some efforts in apply-
ing SDN to automotive networks and making them real-time
capable. However, the combination of the TSN standards with
SDN remains an open research task.

III. THE CASE FOR IN-VEHICULAR TSSDN

The OpenFlow standard defines a configuration interface
between the controller and the switches in a network. This
enables the vendor neutral selection of controller logic and
forwarding devices. Additionally, the network logic in SDN is
mostly centralised at the controller. According to Du et al. [15]
these two properties pave the way for simple, exchangeable,
inexpensive, and future proof forwarding devices.

The SDN controller has global knowledge of the network
and all active flows. This is reinforced by the static nature of
the in-vehicular networks. The network knowledge enables ef-
ficient route determination which can prevent link overloading.
On the other hand, it enables the calculation and verification
of timings over multiple links during run time.
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Fig. 1: TSSDN Switch Architecture

With the central network knowledge, it is possible to re-
route traffic, add new devices (plug & play) and update
the network logic of all switches from a central point. This
simplifies the management of the various configurations of a
car model. For real-time networks this enables the central (re-)
calculation and distribution of time-sensitive schedules [11].

One of the largest potentials of SDN in vehicles is adding
robustness. SDN supports arbitrary network topologies with
redundant paths [15]. In combination with the global network
knowledge, this is an enabler for robust safety methods, such
as fail-operational, fail-over or fast re-route through reconfig-
uration [14]. One of the weak points of SDN regarding ro-
bustness and safety is the single point of failure introduced by
a central network controller. This problem has been solved by
using multiple connected controllers [16], a second controller
in hot standby, or a fallback configuration in the switches.

There are already many security suites for SDN controllers
enabling flow-based firewalls [17] or advanced security appli-
cations such as anomaly or intrusion detection [18]. To secure
in-vehicular networks, the knowledge about the network can
be used to only permit statically whitelisted flows in critical
sections of the network.

While gaining these advantages and potentials of SDN for
in-car networks, it must still be possible to maintain the
deterministic QoS provided by TSN.

IV. TSSDN SWITCHING METHODOLOGY

This section presents the evolution of the switch architecture
from standard Ethernet to TSSDN switches and describes how
OpenFlow can be used to implement time-sensitive flows.

A. Switch Architecture

In TSN and SDN, switches contain additional modules
to extend the functionality of regular switching hardware,
which is depicted in Figure 1. One of the additional modules
introduced for TSN is the “Per-Stream Filtering and Policing”
module. It is used to filter incoming Ethernet frames and
control the arrival times of TDMA-based traffic. In TSN



the egress is controlled by the “Enhancements for Scheduled
Traffic” module. It implements priority queuing, real-time
scheduling and traffic shaping. The schedule for TDMA-based
traffic is defined in the “Schedule” table and needs a precise
and synchronised time in all network devices. This is managed
by the “Time Sync” module. The SRP is used to dynamically
reserve bandwidth along a path of an asynchronous stream.
The “SR Table” module contains all registered talkers and
listeners for time-sensitive streams.
In SDN switches, the forwarding module of a standard Ether-
net switch is replaced by a flow-based forwarding module that
performs flow table lookups. If no corresponding forwarding
rule exists, the packet is dropped by default, while most
controller applications insert the default rule to forward the
packet to the controller. Tasks such as topology discovery and
route determination are performed by the SDN controller. The
switch is connected to the controller via the Open Southbound
API which implements the OpenFlow standard. Additional
network applications can be executed on top of the controller.

In Time-Sensitive Software-Defined Networking (TSSDN),
flow based operations require merging the components of
the TSN and SDN switches. To ensure that the real-time
capabilities are not altered in any way, the TSN ingress and
egress control must remain unchanged. When data packets
arrive, the TSN ingress control manages the timing and applies
stream-based filters. Then the packet is matched against the
flow table and the discovered actions in the matching entry are
executed. The packet is then forwarded to the correct egress
ports, where the TSN egress control manages the timing and
shaping of the outgoing traffic.
TSN devices exchange additional control information, e.g. to
reserve bandwidth with the SRP. To implement correct flow
rules in the forwarding logic, this information needs to traverse
to the SDN controller. The SDN controller updates its network
state and informs the switch about changes, if needed. In
this work we implemented a controller application managing
the Stream Reservation (SR) table for the switches. In the
future, further parts of the TSN control plane could potentially
be extracted from the forwarding devices and embedded into
the controller. Nevertheless, the scheduling and transmission
selection needs to remain in the switches to guarantee timing.

B. Implementing Time-Sensitive Flows with OpenFlow

An extension for TSSDN match rules to OpenFlow is
needed to control the forwarding of TSN flows. Still, the
additional control information of the SRP needs to be com-
municated between the TSSDN switches and the controller.
In a normal TSN switch, forwarding is performed based
on the destination MAC address (multicast) that identifies
the stream’s listener group. By using flow-based forwarding
rules in SDN, the forwarding can be performed with mul-
tiple additional match fields, which enable the realization
of non-functional requirements. We used the match fields
and OpenFlow identifiers shown in Table I to forward time-
sensitive flows. By matching the talker source MAC address,
we ensure that a stream always originates from the same talker

TABLE I: OpenFlow match fields used for TSN streams
Match field OpenFlow Identifier

Listener Group Eth. Dst. Addr. OFPXMT OFB ETH DST
Talker Address Eth. Src. Addr. OFPXMT OFB ETH SRC
Ingress Port Switch Ingress Port OFPXMT OFB IN PORT
VLAN ID 802.1Q VLAN ID OFPXMT OFB VLAN VID
Stream Priority 802.1Q Priority OFPXMT OFB VLAN PCP

and prevent misuse of the multicast group. If the TSN path
redundancy feature is not in use, a certain TSN stream should
always arrive at the same ingress port of the switch. If it arrives
at another port, the SDN controller needs to be informed about
changes in the network. Other match fields are the VLAN ID
and VLAN Stream priority, as a stream multicast group might
be used in multiple VLANs. This could be useful for future
security applications. With these match fields, a TSN stream
can be identified as a flow and can now be forwarded correctly.

In TSSDN all SRP messages need to be forwarded to the
controller instead of being processed in the switch to enable
the controller to configure the forwarding of streams. As
the OpenFlow protocol does not specify a way to exchange
additional control information, we added a new OpenFlow
control message type ForwardSRP, implementing the standard
message signature of OpenFlow and containing the SRP
Message as a payload. In future work this could be mapped
to the OpenFlow standard messages.
To set up a new stream the talker sends a ‘talker advertise’. The
TSSDN switch forwards the SRP message to the controller.
The controller then registers the talker in its SR table and sends
the SRP message back to the switch which then updates its
own SR table and broadcasts the ‘talker advertise’. This way,
the talker advertisement is propagated through the network and
each switch goes through the same process until the talker
advertisement reaches the clients. When a client subscribes
to a stream by sending a ‘listener ready’ message, the switch
forwards it to the controller as well. The controller updates the
listener in the SR table. It then pushes a forwarding rule for the
TSN stream to the switch before it sends the ‘listener ready’
back to the switch. When the switch receives the ForwardSRP
message it delivers it on the direct path to the talker and
each switch along the path goes through the same process.
The talker starts streaming when the ‘listener ready’ arrives.
Using this approach, we can guarantee the timing since the
bandwidth is already reserved and the forwarding rules are
already implemented in all forwarding devices along the path.

V. CASE STUDY

Our case study analyses the real-time capabilities of the
proposed TSSDN concept in a simulation environment. Our
simulation is based on the open-source OMNeT++ IDE and the
INET framework [19]. It provides simulation models of stan-
dard Internet technologies. On top, we use the CoRE4INET
framework [20] [21] which implements real-time Ethernet
protocols and the OpenFlowOMNeTSuite [22] [23] which
implements the OpenFlow protocol. For the proposed TSSDN
concept, we merged the CoRE4INET framework and the
OpenFlowOMNeTSuite in parts.
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The network topology of our simulation-based case study
consists of two clients, two TSSDN switches, and one SDN
controller as shown in Figure 4. Client 0 is the source for
the TSN stream and the UDP cross traffic. Client 1 is the
receiver of all traffic. With this setup, the timing requirements
of TSN across multiple links under load of cross traffic can be
analysed. For comparison, the identical scenario without SDN
using TSN-only switches was considered. All flows remain
the same, so that the result can be directly compared.
At the beginning of the simulation, all the flow tables in the
TSSDN switches are empty. After the controller and switches
are connected to each other as specified in the OpenFlow
standard, the controller transmits an updated default action
for table misses, to be forwarded to the controller for further
decision. For this reason, an idle time of 100ms for setup
operations is introduced in both versions of the network. After
that, the clients can start to work.

Figure 2 shows the latency during the connection setup
phase for all frames transferred in 9ms after the start of
transmission. It also compares the latency of the networks with
and without SDN.
To set up the TSN stream, the talker advertises the stream
and its listeners subscribe with the help of the SRP. In the
TSSDN version of the network, the controller receives the SRP
messages from the forwarding devices, updates its SR tables
and implements the correct flow entries in the forwarding
devices. In our simulation this introduces a delay of 0.3ms to
the SR process compared to the network without SDN. When
the talker receives the listener ready, it begins to stream. As
the stream is already registered in the TSSDN switches during
the SR, no further inspection by the SDN controller is needed.
Thus, no additional latency is introduced by SDN after the SR.
Before the UDP source starts sending frames, it resolves the
cross traffic destination MAC address by ARP. In the TSSDN
version of the network those ARP frames are forwarded by

the SDN controller, which again introduces a slight delay.
Thereafter, the UDP source starts sending datagrams. There is
no matching flow entry for the first UDP frame in the TSSDN
switches. UDP frames are sent to the controller and the flow
tables are updated accordingly. This leads to a much higher
latency for the first UDP frames than for the TSN stream.
In the TSSDN version of the network, the latency of the TSN
stream increases slowly as the cross traffic traverses the links.
At first, only the link between client 0 and switch 0 is under
load of cross traffic. When the controller implements the flow
rule in switch 0, the UDP frames put load on the link between
switch 0 and 1. The latency for the TSN stream increases step
by step, until all network links are under load of cross traffic.
In the version without SDN, the UDP cross traffic effects the
TSN stream immediately. We examined the impact of cross
traffic on time-sensitive communication in previous work [24].
Due to the delay of the first UDP frames in the TSSDN version
of the network, the UDP cross traffic builds up at the TSSDN
switches which increases the latency. The latency normalises
after 7ms. Afterwards both networks behave identical.

Figure 3 shows the minimum, maximum and average la-
tency for the transmission of Ethernet frames from client 0 to
client 1 and compares the simulation results of the UDP cross
traffic and the TSN stream for both versions of the network.
The guarantee of 750 µs shows the analytic maximum latency
for the TSN stream. As the TSN stream in this example has
the highest possible priority, the maximum latency introduced
per port scheduling process is 250 µs (see max. latency AVB
Stream Class A [25]). The TSN stream is scheduled at three
output ports along the path: Client 0, Switch 0 and Switch 1.
The minimum latency of the TSN stream is lower than that of
the UDP cross-traffic in both versions of the network, because
the transmission of cross traffic starts with some delay. After
the initialization of the UDP path, the minimum latency is
320 µs for the TSN stream and 100 µs higher for UDP in both
networks. The average latency is very similar for all transmis-
sions. This is expected as TSN only guarantees a maximum
latency for the TSN stream. The maximum latency of the UDP
frames in the TSSDN version of the network is a result of the
delay introduced by the SDN controller implementing the flow



rules. After the setup phase, the maximum Latency for UDP is
910 µs which is still above the TSN guarantee. In the version
of the network without SDN the maximum latency for UDP
is about 820 µs. Figure 3 shows that the time-sensitive streams
are not delayed by SDN control traffic and all deadlines are
met. The minimum, maximum and average latency of the TSN
streams is about the same for both versions of the network.

Our results show that the combination of the SDN paradigm
and TSN in the proposed architecture works as expected. The
real-time traffic deadlines for the TSN streams are met and
not affected by the introduction of SDN. At the same time, the
forwarding is controlled by an SDN controller which enables
the potentials described in Section III.

VI. CONCLUSION & OUTLOOK

This paper made the case for in-vehicular Time-Sensitive
Software-Defined Networking and explored its potentials and
expectations. We presented our proposal of an integrated
TSSDN switching that combines TSN and SDN capabilities.
The core of this approach is an implementation of time-
sensitive flows via OpenFlow, and we specified in detail how
TSN streams can be mapped and registered at SDN controllers.
In a case study of TSSDN in an event-based simulation
environment, we could demonstrate that while gaining all the
potentials of SDN in the automotive network its real-time
capabilities remain unaltered.

In future work, we plan to investigate possibilities of
transferring further parts of the TSN control logic into the
SDN controller. One important part will be the implementation
of static TDMA flows in a TSSDN and the analysis of
possible side effects of SDN on such time triggered flows.
Another open research challenge will be to investigate real-
world potentials for vehicles including desired improvements
of robustness and security. In addition, it will be of interest
whether those security mechanisms could also be applied to
time-sensitive flows without sacrificing the timing constraints.
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