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1 Introduction

The aim of this paper is to perform a vulnerability analysis of an SDN controller. The

focus is on attacks and tests that are initiated by a SDN switch to expose vulnerabilities

of the SDN controller. In order to ful�ll this aim, a fake switch was needed that

primarily behaves like a legitimate switch, but then starts to perform tests to verify

the security of the SDN controller. This led to another goal of this paper, which is

the analysis of how it is most possible to imitate a switch using frameworks. For this

purpose, a hybrid approach was chosen, consisting of a self-written program that

imitates a switch and an existing framework called DELTA. The suitability of this

approach and that of the individual components was tested and analyzed in the scope

of this project. In addition, it was determined which attacks starting from the switch

to the SDN controller are suitable, for which the possibilities of the hybrid approach

were also examined. This resulted in several test cases, which were �rst applied to a

SDN controller in a virtual test environment and then to an SDN controller located on

the tabletop setup of the CORE project group. Based on the results of the test cases

of the hybrid approach on di�erent SDN controllers, an analysis was performed to

identify the vulnerabilities of the respective SDN controller.

1.1 Structure

The basics of an SDN network, such as the SDN controller, SDN switch and the

communication between them using OpenFlow, are described in Chapter 2. Chapter 3

continues with an evaluation of how a switch can be imitated and which approach

will be used. In Chapter 4, the test environment is considered in more detail. The test

cases are described in Chapter 5, and Chapter 6 evaluates the results of the test cases.
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1 Introduction

Chapter 7 summarizes the results and gives an insight on how these results could be

used in further projects.
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2 SDN Networking

Software-de�ned Networking (SDN) separates the control plane and the data plane

in communication networks. While the data level is kept decentralized, the control

level is logically centralized in a controller and serves as an interface for con�guration

purposes [8]. The general architecture of the SDN network is shown in Figure 2.1.

There are three layers: The infrastructure, the control and the application layer. The

infrastructure layer which consists of network devices such as switches (detailed

explanation see 2.1) and router. These devices are only responsible for forwarding

data packets. The control layer is the SDN layer in which the SDN controller is

located. The centralized and programmable SDN controller is responsible for making

the actual decisions in the SDN network. SDN controllers are considered the brain

of an OpenFlow network. Every con�guration and forwarding rules are de�ned by

applications running on top of a controller. More information regarding the SDN

Controller will be provided in 2.1. The Application Layer in the SDN network is the

highest level of the network protocol and includes the interfaces between applications

and the SDN controller. This layer de�nes network policies and network functions

that are used by applications to access and control the network [18] [4].

3



2 SDN Networking

Figure 2.1: SDN Architecture [18]

The communication between the SDN controller and the switch, which re�ects

the separation of the control and data plane is de�ned by a particular protocol i.e.,

OpenFlow (see 2.3). Whereas the SDN enabled switch is often a dedicated networking

device, the SDN controller is implemented as software and is usually deployed on a

standard server component [8].

2.1 SDN Controller

The SDN Controller is a logically centralized software component in a Software-de�ned

Networking (SDN) that automates network management and network control. The

SDN controller acts as the core of the network operating system. The SDN controller is

responsible for con�guring network devices such as switches and routers to optimize

tra�c within the network. In general, the SDN controller enables network resources to

be managed �exibly and applications to be deployed quickly by separating the network

layer from the application layer. This allows the network to dynamically adapt to the

needs of applications by de�ning policies that control tra�c. The SDN controller acts

as the core of the network operating system. It is responsible for managing network

con�gurations and forwarding rules. It also manages multiple applications, provision

resources, and enforce security or network policies. Meaning that changes only need

to be made in one place, at the controller, and that individual devices no longer have

to be changed when the network is modi�ed. [26] [23]
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2 SDN Networking

There are several SDN controllers, including OpenDaylight [22], Floodlight [5], Ryu

[2], and ONOS [25], all are open source software developed and supported by the

community [26]. A detailed explanation of the controller frameworks is provided in

4.1.1.

2.2 SDN Switch

In general, a switch is a network device that is capable of controlling and forwarding

data tra�c within a Local Area Network (LAN). A switch is an important component

of networks because it enables e�cient use of network bandwidth and ensures reliable

data transmission. A switch has multiple ports to which other network devices can be

connected. The switch is able to analyze the data tra�c and forward the data packets

only to the port where the target device is connected, instead of forwarding to all

connected devices. This means that data transmission is more e�cient, as it is only

sent to the devices that need it.

An SDN switch is a network switch used in the context of Software-de�ned Net-

working (SDN). In a SDN network, the switch is an important component of the data

plane. In contrast to a traditional switch that makes decisions based on MAC addresses

or other local routing tables, a SDN switch receives its instructions from the SDN

controller, which automates network management and control as described above.

Also unlike traditional switches that perform network control locally on the device,

control for SDN switches is centralized and performed from the SDN controller. A SDN

switch is a network device that is capable of forwarding tra�c within the network

based on the instructions it receives from the SDN controller. [12] [19]

2.3 OpenFlow Communication

OpenFlow is a protocol used in Software-de�ned Networking (SDN) to enable com-

munication between the SDN controller and network devices such as SDN switches.

OpenFlow was originally developed by a group of researchers at Stanford University

and �rst published in 2008. Since 2011, OpenFlow has been maintained by the Open

Networking Foundation (ONF).[18] A typical OpenFlow network would contain one
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2 SDN Networking

or more switches and one or more controllers. OpenFlow is a Layer 2 and 3 protocol

with the basic objective of moving control of the network from individual network

devices from di�erent vendors to a centralized software controller. OpenFlow operates

on top of TCP/IP. [18] [12] [11]

Communication between a SDN controller and a SDN switch is done using the

OpenFlow protocol. OpenFlow is a standard protocol that serves as the basis for com-

munication between the SDN controller and the SDN switch (see 2.2). An OpenFlow

switch communicates with the controller through an OpenFlow channel. An OpenFlow

channel can be encrypted by using TLS or run directly over TCP.

When a SDN switch receives a data request from a client, the packet is �rst forwarded

to the SDN controller because the switch does not have local routing tables. The SDN

controller then decides how to forward the packet, based on network policies set by

administrators. Once the SDN controller makes a decision, it forwards the instructions

to the SDN switch to forward the packet accordingly. The SDN switch is now able to

forward tra�c based on the SDN controller’s instructions because of the �ow table. A

�ow table is a table de�ned by OpenFlow that contains information about the data

�ows to be processed by the switch. Each entry in the �ow table de�nes a rule that

speci�es how certain types of network tra�c should be handled. An OpenFlow switch

consists of one or more �ow tables that perform packet search and packet forwarding.

The controller controls the switch by adding, updating, and deleting �ow entries via

OpenFlow messages, proactively or reactively (in response to the arrival of new �ows).

The controller sends �ow mod messages to the switches to update the �ow tables on

these devices. Each �ow table entry consists of several �elds, including a match �eld

that de�nes what type of network tra�c should be handled by the rule, and actions to

be taken when a match is found. [12] [1] [8]

The communication between the SDN controller and the SDN switch is thus bid-

irectional. The SDN controller sends instructions to the switch, and the switch sends

reports and statistics back to the controller. This enables the controller to monitor

and optimize network performance in real time. This leads to three di�erent kinds of

messages: controller-to-switch, asynchronous and symmetric. Under the respective

message category are the individual message types.
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2 SDN Networking

Controller-to-Switch Messages Controller-to-switch messages are initiated by

the controller and used to directly manage or inspect the state of the switch. The

following is an excerpt from the OpenFlow Switch Speci�cation [7] to explain the

possible message types:

• Features — The controller requests the basic capabilities of a switch by sending

a features request. The switch must respond with a features reply that speci�es

the basic capabilities of the switch.

• Get Con�g — The controller sets and queries con�guration parameters in the

switch. The switch only responds to a query from the controller.

• Modify-State — The controller sends Modify-State messages to manage state

on the switches. Their primary purpose is to add, delete, and modify �ow or

group entries in the OpenFlow tables and to set switch port properties.

• Read-State — The controller sends Read-State messages to collect various in-

formation from the switch, such as current con�guration and statistics.

• Packet-out — These are used by the controller to send packets out of the

speci�ed port on the switch, or to forward packets received through packet-

in messages. Packet-out messages must contain a full packet or a bu�er ID

representing a packet stored in the switch. The message must also contain a

list of actions to be applied in the order they are speci�ed. An empty action list

drops the packet.

• Barrier — Barrier messages are used to con�rm the completion of the previous

operations. The controller sends a Barrier request. The switch must send a

Barrier reply when all the previous operations are complete.

• Role-Request — Role-Request messages are used by the controller to set the

role of its OpenFlow channel, or query that role. It is typically used when the

switch connects to multiple controllers.

7



2 SDN Networking

Asynchronous Messages Asynchronous messages are initiated by the switch and

used to update the controller about network events and changes to the switch state.

The following is an excerpt from the OpenFlow Switch Speci�cation [7] to explain the

possible message types:

• Packet-In — Transfer the control of a packet to the controller. For all packets

forwarded to the Controller reserved port using a �ow entry or the table-miss

�ow entry, a packet-in event is always sent to controllers. Other processing,

such as TTL checking, can also generate packet-in events to send packets to the

controller. The packet-in events can include the full packet or can be con�gured

to bu�er packets in the switch. If the packet-in event is con�gured to bu�er

packets, the packet-in events contain only some fraction of the packet header

and a bu�er ID. The controller processes the full packet or the combination of

the packet header and the bu�er ID. Then, the controller sends a packet-out

message to direct the switch to process the packet.

• Flow-Removed — Inform the controller about the removal of a �ow entry from

a �ow table. These are generated due to a controller �ow delete request or the

switch �ow expiry process when one of the �ow timeouts is exceeded.

• Port-status — Inform the controller of a state or setting change on a port.

• Error — Inform the controller of a problem or error.

Symmetric Messages Symmetric messages are initiated by either the switch or

the controller and sent without solicitation. The following is an excerpt from the

OpenFlow Switch Speci�cation [7] to explain the possible message types:

• Hello — Hello messages are exchanged between the switch and controller upon

connection startup.

• Echo— Echo request messages can be sent from either the switch or the controller

and must return an echo reply. They are mainly used to verify the liveness of a

controller-switch connection.

[7], [10], [16]
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2 SDN Networking

Communication Procedure Here is a typical sequence of messages exchanged

when establishing a connection between an SDN controller and a switch:

1. The SDN controller sends a Hello message to the switch to establish a connection.

2. The switch responds with a Hello message to con�rm the connection.

3. The SDN controller sends a Features Request message to the switch to retrieve

information about the switch’s capabilities and features.

4. The switch responds with a Features Reply message containing the requested

information.

5. The SDN controller sends a "Con�guration Request" message to the switch to

change the switch’s con�guration.

6. The switch responds with a Con�guration Reply message to con�rm the success

or failure of the con�guration change.

These steps can vary depending on the use case, and other messages can be ex-

changed to control and program the �ow of data in the network. But in general, this

is the basic �ow of communication between an SDN controller and a switch using

OpenFlow messages. [17] [16] [8] [1]

In this document, in addition to the abbreviation OF, which denotes the OpenFlow

standard, the abbreviation OFPT will also be used or seen in the code snippets. OFPT

is used to describe the di�erent types of OpenFlow messages.

9



3 Possibilities of Impersonating a
Switch

The goal of this project is to imitate a switch using software, successfully connect to

the SDN controller, exchange OpenFlow messages with it, and perform attacks on the

controller in addition to imitating normal operation of the switch. In order to ful�ll

this goal, some decisions had to be made in advance on how to implement this.

This chapter describes the possibilities to create a virtual switch that can commu-

nicate with an OpenFlow controller. The various options were considered from the

perspective that the goal is to have a virtual software-based switch that can successfully

connect to the SDN controller and then be able to perform attacks on the SDN control-

ler through extensions to normal operation. For this purpose, Section 3.1 examines

which frameworks exist that are already adapted to the use case in which attacks are

to be carried out from the switch on the SDN controller. The focus here is primarily on

the DELTA framework. In Section 3.2, we examined the possibilities of implementing

a virtual switch without a framework. The focus here is on explaining why the e�ort

of a self-written program can be justi�ed and what advantages it o�ers over other

solutions. Furthermore, this section discusses which technical decisions had to be

made for the program to meet the requirements. After many decisions have been made

in the two sections, Section 3.3 will summarize them and explain in what way which

solution approach is suitable to perform the test cases (attacks). This decision forms

the foundation for the further process.

10
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3.1 Existing Frameworks - DELTA

The �rst step was to conduct a research for existing solutions for penetration testing in

SDN networks regarding the OpenFlow communication between SDN controller and

switch. During this research, it was discovered that part of the CORE project group has

already begun to investigate such a framework: The DELTA: SDN Security Evaluation

Framework (hereafter referred to as DELTA). DELTA is a framework for evaluating

the security of SDN systems. The framework provides a set of tools and methods to

identify and analyze potential security vulnerabilities in SDN systems. It supports

various security analyses such as penetration testing, fuzzing testing, and vulnerability

assessments. The DELTA framework aims to provide SDN system developers and

security professionals with a tool to improve the security of SDN systems and minimize

potential attack vectors [20], [15], [3]. Since the extensive setup had already been

carried out by the CORE project group and was therefore immediately ready for use, it

was a reasonable step to abandon the previous research and focus on DELTA. DELTA

also o�ers, among other things, a variety of test cases that perform attack scenarios

using OpenFlow messages sent from the switch to the SDN controller. It therefore

meets the basic requirements for this project. The architecture of DELTA and its

components is shown in Figure 3.1.

Figure 3.1: DELTA Architecture [3]

11



3 Possibilities of Impersonating a Switch

DELTA consist of four di�erent agents which are described as follows on GitHub

[3]:

• Agent Manager — It controls the other agents which are deployed on the target

SDN network. It also analyzes the test results collected from the agents.

• Application Agent — It conducts attack procedures as instructed by the man-

ager. It implements the known malicious functions as an application agent

library.

• Channel Agent — It is deployed between the control plane (controller) and

the data plane (switch). The agent sni�s and modi�es the unencrypted control

messages.

• Host Agent — It behaves as if it were a legitimate host participating in the target

SDN network. It generates network tra�c as instructed by the agent manager

(e.g. DDoS, LLDP injection, etc).

DELTA supports the most common controllers like Floodlight [5], ONOS [25],

OpenDaylight [22], and Ryu [2] and any OpenFlow enabled switches (including soft-

ware switches).

There are three main test sets within DELTA:

• Test set 1 refers to the data plane security, therefore on the OpenFlow messages

from a controller to a switch.

• Test set 2 refers to the control plane security, therefore on the OpenFlow messages

from a switch to a controller.

• Test set 3 refers to advanced security, those are sophisticated security tests

exploiting a variety of vulnerabilities (e.g. SDN applications exploiting SDN

controllers’ architectural vulnerabilities).

[14] [15]
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3.2 Self-Wri�en Program

Considerations of a Self-Wri�en Program to Simulate a Switch Several op-

tions for implementing a switch for the test scenario were considered. Requirements

for this were that the switch be maximally modi�able so that various attacks could be

carried out. For this purpose, the code must be constantly adapted and extended in

order to be able to deal with di�erent attack scenarios. Options like OpenVSwitch [6],

which is an open-source software that serves as a virtual switch for managing network

connections in virtualization environments, were considered. However, they were too

complex for our application purpose and not speci�cally customized for penetration

testing, which is why virtual switch options were discarded as a possible option. The

general advantages of writing your own program to simulate a switch are, among

others, the complete control over the behavior and functionality of the switch and the

possibility to customize or extend functions and protocols. There is no need to deal

with other software and discuss what exactly is needed and what is not, and there is

no need to check in advance whether the functions are su�cient to achieve the goals.

However, coding a custom switch also requires more development time, but still o�ers

the advantage of implementing everything you want and being able to focus exactly on

the desired use cases - in this case, attack scenarios. In addition to these considerations,

the biggest advantage of a custom program was that a maximum number of options

must be available, especially for attack scenarios. It must be possible to change the

program without restriction so that an attack can be as successful as possible from

the attacker’s point of view. Static solutions that make only one path possible are

too limiting for this. For this reason, it o�ered itself to write an own program that

simulates a switch. So, it could be implemented that only necessary properties are

contained in it and the structure is clear and easy to handle. In addition, an own

program allows maximum freedom in the design of the attack vectors.

OpenFlow Library To imitate a switch, it must be clari�ed how it communicates

with the SDN controller. This communication takes place via the OpenFlow protocol

already introduced in 2.3. The �rst step was to research which OpenFlow library was

the most suitable to create the OpenFlow messages in the program. The requirements

13
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for a suitable OpenFlow library are very simple. First, it must be well documented

how the connection establishment can be implemented using the messages. Then the

essential point is that it must be possible to create all existing OpenFlow messages

independent of the OpenFlow version. All OpenFlow libraries o�er this. So, it is

important in the next step to see on which language the library should be based,

because the program code must be programmed in the same programming language.

Here the decision was made that Python would be suitable since Python programming

language is typically used for programming OpenFlow messages, as it provides a

simple and e�ective way to implement and test network protocols. Thus, the selection

of possible libraries was limited to Python. Finally, the comprehensiveness and the

type of documentation as well as the uncomplicated handling were decisive. It was

important that every single OpenFlow message and its �elds are documented in detail

and that it is possible to start using the library immediately. These requirements were

satisfactorily met by PyOF (Python OpenFlow) from Kytos [13].

PyOF is a Python library that allows to create, process, and analyze OpenFlow

messages. It is part of the Kytos project, which provides an open-source software

platform for network automation. PyOF is an important part of Kytos because it

provides a powerful API for programming network devices that support the OpenFlow

standard. PyOF provides an API that allows you to create and receive OpenFlow

messages to communicate with another OpenFlow device. Thus, by using PyOF, a

virtual switch can be created that can communicate with an OpenFlow controller.

According to this, it is software-based possible to imitate a switch with PyOF. [13]

Thus, the most basic requirements for the program were met. The detailed program

structure is described in section 4.1.2.

3.3 Hybrid Solution

On the one hand, the DELTA framework was considered, and it was discussed that

its functionality and test cases are useful and target oriented. On the other hand, we

evaluated how to make the test cases even more �exible and extensible than is possible

in DELTA. For this it was decided that a self-written program to simulate a switch is

more target-oriented and most �exible. Since both approaches have their advantages
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3 Possibilities of Impersonating a Switch

and disadvantages, it makes sense not to commit to one solution approach but to

choose a hybrid solution. For this reason, both DELTA tests and self-written tests will

be used to test the security of the switch controller communication. These tests are

de�ned and described in more detail in Chapter 5.
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This chapter forms the basis of how the test environment looks in detail. In the previous

chapters, the basics about the components of the SDN network and the possibilities of

faking a switch were explained. In addition, an initial decision on how the attacks are

to be carried out has already been made in Chapter 3.3.

In this chapter, these individual fundamentals will now be concretized. The goal is

to obtain a detailed overview of the test environment and the individual components

involved in the test cases. For this in 4.1, the components are introduced which are

necessary for the project. In 4.2, the entire test environments are examined in more

detail, i.e., the locations where the attacks will be carried out and in which form the

components presented in 4.1 will be used in each case.

4.1 Test Components

In the following, the most important components of this project will be discussed. In

4.1.1, it is speci�ed that the ONOS framework will be used for the SDN controller. In

4.1.2, the structure of the custom program to implement a pretend switch is described.

And in 4.1.3 it is described how DELTA was integrated into this project.

4.1.1 ONOS Controller

For the SDN Controller was a controller framework required. Several controller

frameworks exist, such as such as Floodlight [5], Ryu [2], the Open Network Operating

System (ONOS) [25], and OpenDaylight [22]. For this project the decision was made

based on the controller framework which would be used when testing the test cases on

the tabletop setup. The Open Network Operating System Framework is running there
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which will be referred to as ONOS in the following. That is why the decision was made

for ONOS. For this reason, a comprehensive analysis and comparison of the other

frameworks was not carried out. ONOS is an open-source controller framework for

Software-de�ned Networking (SDN) that provides a powerful API, tools for monitoring

and analyzing networks, and a modular architecture. ONOS is known for its scalability

as supported by the Open Networking Foundation (ONF) and by an active community

of developers. ONOS provides the control plane for a software de�ned network.

The ONOS platform and applications act as an extensible, modular, distributed SDN

controller. ONOS therefore enables user to manage network components such as

switches and links. ONOS applications and use cases often consist of customized

communication routing, management, or monitoring services for software-de�ned

networks. Thus, it also ful�lls the prerequisite needed for this test [25].

Detailed information about the respective ONOS version and the additionally in-

stalled app services can be found in Chapter 4.2.

4.1.2 Self-Wri�en Program

The entire program can be inspected in Appendix 1 (Impersonated Switch.py).

Integration of the Python OpenFlow Library from Kytos As already mentioned

in 3.2, the Python SDN Library from Kytos is used to create SDN messages. The library

is built in a way that the SDN messages can be imported depending on the version.

For this project the SDN version 04 was used. The message types are also divided

into symmetric, asynchronous and controller2switch messages as described in 2.3.

In addition, the library also contains common elements in which further tools are

provided to better access the message header or to unpack the SDN message to better

access individual items by code. In the code snippet (see Figure 4.1) you can see some

examples of imports.

Figure 4.1: Example Imports
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Connection Establishment and First Hello Before the actual SDN protocol con-

nection between SDN controller and switch can be established, a transport connection

must be established as the �rst stage. This can be either a TCP or a TLS connection. In

this case it is a TCP connection between SDN controller and switch. The code snippet

(see Figure 4.2) shows the implementation of the TCP connection setup between switch

and SDN controller.

Figure 4.2: Main with set connection

As soon as a successful connection has been established, the switch starts the

communication with the start_communication(tcp_socket, bu�er_size) function. The

�rst Hello message is sent from the switch to the SDN controller. The code snippet in

Figure 4.3 shows this process.

Figure 4.3: Start communication

18



4 Test Setup

First, a Hello message is created using the PyOF library in the function new_list_of_
hello_elements(). The PyOF library also provides a variety of examples of how a

particular message type can usually be �lled with information, which has made building

OF messages for this project much easier overall. In general, and also in this case, the

OF messages are created using the send_message(tcp_socket, msg) function (see code

snippet in Figure 4.4) to the SDN controller.

Figure 4.4: Send message

After sending the Hello message, the switch actively waits once for the response

of the SDN controller to ensure that a Hello message comes back and that the initial

Hello handshake for establishing the connection was successful.

Regular Operating After these prerequisites were met, consideration was given to

how the �ow of the program could best be optimized. Since the simulated switch must

behave like a real switch, it must be ensured that it responds quickly and e�ciently

to messages from the SDN controller, i.e. that it can simulate and ful�ll the normal

operation of a switch well. To implement normal operation as e�ciently as possible, a

thread-based approach was chosen. This approach is shown in Figure 4.5.

Figure 4.5: Thread-based approach
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There are two threads, the Receive and the Reply thread. The Receive Thread is

responsible for checking if the incoming message is an SDN message, if so it will be

processed and pushed into the message queue. The Reply Thread fetches the �rst SDN

message from the queue at the beginning. Two types of messages are distinguished.

The �rst type are the answers of the controller, these lead to the fact that the controller

does not expect an answer, but expects from the switch to accomplish internal changes

as for example to delete a �ow entry in the �ow table of the switch. The other message

type is status queries from the SDN controller where the controller expects a suitable

response from the switch. In the code snippet (see Figure 4.6) you can see the structure

of the receive and reply thread in the code.

Figure 4.6: Reply thread

The messages are taken from the byte stream when they are received and placed in

the queue. The reply thread takes the message, unpacks it so that it can be worked with

better in the further course and calls the function handle_request_messages(tcp_socket,
received_msg, data). In this function �rst the message type is extracted from the header

as well as the xid of the request, which serves as ID of the communication and must
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be contained in the answer. After that a query is made which message type it is. Once

the message type has been identi�ed, the reply message is prepared using PyOF and

sent using the send_message(tcp_socket, msg) function. Messages that do not require a

response from the switch will not be discussed further. The handle request method is

the core of the application. From here we simulate the normal operation of the switch

and respond to appropriate requests from the SDN controller to maintain the trusted

connection. In the code snippet (see Figure 4.7) you can see a part of the handle request

function.

Figure 4.7: Handle request

4.1.3 DELTA

At the beginning, it had to be ensured that DELTA is also compatible with the SDN

controller. It turned out that DELTA is compatible with ONOS, so this solution is

compatible with the test setup. As already mentioned in Section 3.1 the DELTA

framework was already discovered and prepared by the CORE project group. Thus,

it was at the stage that DELTA was ready for deployment and could be used for the

research purposes of this work. Accordingly, no further preparation was necessary

here, but this section brie�y describes how DELTA can be deployed in general, so that

one can better understand the test setup.

The DELTA project o�ers a virtual machine image �le speci�cally designed for

quick and easy setup of DELTA in a virtual environment. This approach has already

been chosen by the project group and set up on both the table setup and for personal

use in a virtual environment.
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The virtual machine image contains a precon�gured version of Ubuntu Linux and

of all the necessary dependencies and tools to run DELTA. It also contains a Graphical

User Interface (GUI) for using DELTA. The structure of the DELTA test environment

within the virtual machine is shown in Figure 4.8. The individual components, i.e. the

agents, have already been introduced in Section 3.1.

Figure 4.8: DELTA test environment

4.2 Test Environment

There are two environments in which the tests have been performed. The self-written

program and the test cases contained therein, and the tests of the DELTA framework

were initially performed in a virtual test environment which consists only of virtually

generated entities. The test environment acts as a preliminary stage for testing the

program and framework on the tabletop setup. In the following, both are analyzed in

more detail. This analysis serves, among other things, as a basis for the analysis of the

resulting test results and, if applicable, the di�erences contained therein.

Figure 4.9: Test setup structure
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The general structure of the test setup is shown in the diagram above (see Figure

4.9). This general overview is applicable for both test environments. The entities have

been explained before in 4.1. The test environments consist of a SDN controller based

on ONOS (see Section 4.1.1). For the tabletop setup ONOS is installed in the version

Sparrow (2.2.2) [21] as a service, which is automatically started with the standard apps

of the table setup during system startup. For the virtual test environment, the ONOS

version Tucan (2.3.0) [21] is used as this was the latest ONOS version while performing

the tests. To con�gure ONOS for the test scenario, additional app services had to be

installed, which were also used for the table setup. The following SecVi table setup

app services are installed for both environments:

• StaticForwarding App - Must be enabled, implements static rules of the table

structure.

• ReactiveForwarding App - Must be enabled, implements dynamic forwarding

using an Access Control List (ACL). For this, the ACL entries are installed from

a stored �le. The rules are displayed in the GUI. Installed �ows and violations

are also re�ected in a GUI. [9]

Only these and the ONOS default settings were used for the virtual test environ-

ment, since the SDN controller does not have a larger purpose and is only used to

interact with test switches and the pretended malicious switch. For the tabletop setup,

however, additional applications are installed, as this SDN controller must perform

several functionalities, since this is the setup of a vehicle network. These additional

applications like anomaly detection, ONOS apps and optional apps do not play any

further role here in detail for now.

The SDN controller communicates with a variable number of switches via the

OpenFlow protocol. For the tabletop setup, there is an additional number of devices

connected to two switched, since this is an active software de�ned network and the

controller thus con�gures and manages additional devices. In the virtual environment,

on the other hand there will be at the beginning no other switches linked to the

controller. The �rst aim will be to add an impersonated switch to the network. In

further test cases authentic switches will be connected to the SDN controller before
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the fake switch will be added. OpenFlow version 1.3 (v0x04, or OF1.3) is used for both

test environments.

The following diagram (see Figure 4.10) shows the topology of the table structure.

Either the program and the DELTA framework are located on the core-NUC2. The

SDN controller is set up on the core-NUC1.

Figure 4.10: Table structure topology

The simulated switch, therefore, the fake switch is based on the self-written program

(see 4.1.2) and on the DELTA framework (see 4.1.3) which were mentioned before.

Both approaches focus on connecting to the controller using OpenFlow protocol and

becoming a legitimate part of the SDN network from the controller’s perspective.

Once this has been achieved, both approaches have various test cases for carrying out

further penetration tests. At this point, there is no di�erence between the virtual test

environment and the table setup.
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This chapter describes the test cases to be performed both in the virtual environment

and on the tabletop setup. The test environments have already been described in detail

in Section 4.2. Test Cases executed with both the DELTA framework (see 3.1 and 4.1.3)

and the self-written program (see 3.2 and 4.1.2). The main focus will be on DELTA

because the framework brings a lot of relevant tests. However, during the deployment

it was noticed that not all tests are executable as required, so the already self-written

program was added as an addition to these and other test cases. The DELTA test cases

are described in Section 5.1 and the self-written program in Section 5.2.

5.1 DELTA A�acks

As already discussed in Section 3.1 there are three main test sets within the DELTA

framework. The test set number 2 refers to the control plane security which means

that it targets the controller by attacks with focus on the OpenFlow messages from the

switch to the controller. Therefore, test set 2 is particularly suitable for performing the

tests. In the following, the planned test cases are considered, and the respective attack

is described. The test cases are assigned a number. This number is the identi�cation of

the test, which will be used throughout this document to identify the respective test.

2.1.010 – Malformed version number

The �rst test which will be performed is test case number 2.1.010 – Malformed Version
Number. The version number in an OpenFlow message between a SDN controller and

a switch is used to identify the version of the OpenFlow protocol used by the two

endpoints. The OpenFlow protocol is updated periodically to add new features, �x
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bugs, or improve performance. The version number is an 8-bit �eld in the OpenFlow

header. The header is the �rst part of an OpenFlow message and contains information

such as the version number, the length of the message, the type of the message, and

the ID of the transaction (xid) (see Figure 5.1).

Figure 5.1: OpenFlow header [7]

The version number allows endpoints to determine which functions and features of

the protocol are supported and how messages should be interpreted. By specifying

the version number, the SDN controller and switch can ensure that they are using the

same protocol and that messages can be exchanged e�ectively. If the version numbers

do not match, this can cause incompatibilities and a�ect the proper operation of the

network.

In summary the Malformed Version Number test is a method to test the communica-

tion between SDN controller and switch for compatibility problems. In this process, an

incorrect version number is set in the OpenFlow message header by the switch and sent

to the SDN controller. If the SDN controller does not recognize the incorrect version

number and does not respond appropriately to the message, it means that this attack

was successful and that a potential exploitable vulnerability has been discovered.

2.1.020 – Corrupted Control Message (Corrupted
Content)

In the Corrupted Control Message test case, the switch simulates an error or corruption

in the OpenFlow message by changing either the header or the content of the message.

The switch then sends the corrupted message to the controller and expects a response.
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When the controller receives a corrupted message, it should, at best, check whether

the header or the contents of the message are valid. If it is not, the controller will

send an error message to the switch stating that the message is corrupted and cannot

be processed. This test checks if the controller is able to detect corrupted OpenFlow

messages and react appropriately to them. The idea behind this test is to check the

resistance of the controller against potential attacks on the network. By sending

corrupt messages, an attacker can try to make the controller perform unexpected

actions or compromise the network. The test is intended to ensure that the controller

is capable of detecting and defending against such attacks.

2.1.030 – Handshake without Hello

In the Handshake without Hello test, an OpenFlow connection request is sent by the

switch to the SDN controller without a “Hello" message having been sent beforehand. A

"Hello" message is a special OpenFlow message that is used to establish the connection

between the switch and the SDN controller and to exchange the supported version of

the OpenFlow protocol (more information regarding the handshake see Section 2.3).

Figure 5.2 shows a correct and complete Hello Handshake.

Figure 5.2: Complete Hello handshake [28], [29], [10]
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If the SDN controller accepts the connection without receiving a "Hello" message and

sends a response message, this indicates that this attack was successful and that there

is a potential vulnerability in this scenario. A properly implemented SDN controller

should not send a response without �rst performing a full handshake to establish the

connection. The SDN controller should terminate the connection if no "Hello" message

has been received.

2.1.040 – Control Message before Hello

In the Control Message before Hello test case, the OpenFlow Hello handshake (see

Figure 5.2 above for the correct and complete procedure) is not performed at all. The

switch starts the communication by directly sending a packet-in OpenFlow message.

This test is used to evaluate if the SDN controller has su�cient protection against

control communication prior completed connection establishment. The SDN controller

has two possibilities to react to this control message, in this case a packet-in, sent by

the switch.

If the SDN controller is su�ciently secured, the expectation is that it will simply

ignore the message from the switch and neither respond nor trigger any resulting

actions. However, if it should respond to this message or even trigger actions, a major

vulnerability is revealed, since at this point, without a completely correctly executed

handshake, a switch can simply send control messages to the SDN controller. If the test

result is FAIL, i.e. the controller is vulnerable to this attack. This test can be extended

as required with messages other than packet-in. The self-written program presented

in 3.2 and 4.1.2 is suitable for such test extensions.

2.1.050 – Multiple Main Connection Request from
Same Switch

This Multiple Main Connection Request from same Switch test checks if a switch attempts

to connect multiple times as the main connection to a SDN controller. In such a scenario,

the switch would attempt to establish multiple connections to the controller, which
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may cause the network connection to be disrupted. This can happen if the switch sends

the "Connect" OpenFlow protocol message multiple times without �rst disconnecting

from the controller. This can happen for a variety of reasons, such as a disconnection

or network malfunction. The test checks whether the SDN controller is able to detect

and prevent such situations by ensuring that only one connection is set up as the main

connection. The test runs in such a way that the dummy switch performs a complete

and successful handshake with the controller. This handshake is then attempted again

from the switch. If the second handshake is executed, the result of this test is that the

controller has a potential vulnerability. However, if the second handshake is rejected,

the controller behaves as required and passes the test.

5.2 Self-Wri�en Program

After it was possible to successfully pass the �rst test case with the self-written program,

namely to establish the connection with the SDN controller, and the execution of

further tests was planned, attention was drawn to the DELTA framework. Since the

DELTA framework performs a large number of tests that were intended for the self-

written program or had already been started to be implemented, there was no need

to implement them there any further. For example, the Malformed Version Number

test implemented and contained in the program is no longer listed here for this reason.

However, since in practice concerning DELTA a few tests had not worked in all test

environments or in general, for this the self-written program was expanded by these

tests. For this reason, the initial idea of replacing the program with DELTA was

abandoned. Instead, the decision was made for a hybrid solution. Both approaches to

test the SDN controller are equally strong and useful. The tests that can be implemented

well by DELTA have already been described in detail in Section 5.1. Tests that can

only be partially implemented in DELTA, or not at all, such as test case number 3.1.010
Packet-in Flooding, were therefore implemented in this program. The reason for leaving

the program as an active part of this project is that precisely such cases, in which

static frameworks reach their limits, can be solved in a �exible way with the program.

Likewise, the test cases can be extended as needed. This is hardly possible within the

DELTA framework. The test cases for the self-written program can be recognized by

29



5 Test Cases

the "#" which stands in front of the test case number. In the Section 4.1.2 the structure

and process of the program was already described in detail. It is still to be clari�ed

at which point in the code the tests should be carried out and above all also when

an attack is to be inserted into the process. Depending on the attack, it makes sense

to �rst wait for the handshake and only start the attack when normal processing is

ongoing (of course, this does not apply to attacks such as handshake without hello

etc.). This normal processing takes place in the handle request function of the program.

Since the SDN controller continues to communicate with the switch after the initial

settings have been shared, it makes sense to take a close look at the message history

before launching the attack. For this project, the message history was analyzed, and

the attacks were initiated based on this analysis when certain messages were received.

#0 - Initial Test

The initial test and precondition is the general successful establishment of a connection

between the simulated switch and the SDN controller, as well as the exchange of fake

messages from the switch. This may seem like a rather irrelevant simple test in the �rst

place, but if the SDN controller performs the connection setup and sees the simulated

switch as part of the network, the SDN controller has an incorrect view of the network

topology. So, it is a �rst step to be able to in�uence the perception and behavior of

the SDN controller and possibly o�ers further possibilities for malicious attacks. A

successful connection means that the SDN controller trusts the pretend switch and is

potentially unable to distinguish between a legitimate switch and a pretend switch.

This could potentially lead to attacks, as the pretend switch may be able to manipulate

the controller and perform unwanted actions. The code snippet of the handshake was

already shown and described in 4.1.2.
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#2.1.020 – Corrupted Control Message (Corrupted
Content)

This test is performed in addition to the DELTA test, as the DELTA test proved not

to be completely su�cient, or the result was not comprehensible enough. For this

reason, the decision was made to add this test to the program. In the Corrupted

control message test case, the switch simulates an error or corruption in the OpenFlow

message by changing either the header or the content of the message. The switch then

sends the corrupted message to the controller and expects a response. A more detailed

explanation can be found in 5.1.

The test is divided into two parts:

1. CorruptedControlMessage (CorruptedContent) during connection setup:
Here the corrupted message is sent during the initial handshake. This test is

used to check whether a new switch can already be added to the network in this

way, despite corrupted messages.

2. Corrupted Control Message (Corrupted Content) during normal opera-
tion: In this test scenario the corrupted message is sent after the handshake,

after the switch has been communicating with the SDN controller for a while.

The corrupted content will be inserted in a required response for the SDN con-

troller to make sure that he processes it. This test aims to check if it makes

a di�erence if an existing switch is compromised instead of a new switch. So

whether the SDN controller treats corrupted messages from already successfully

connected switches di�erently.

#3.1.010 – Packet-in Flooding

Packet-in �ooding is a test in which the switch intentionally sends a large number of

packet-in messages to the SDN controller to test its responsiveness and performance.

This tests whether the controller is able to process the large number of packet-in
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messages and respond quickly enough to e�ectively control the switch. This test is

important to ensure the scalability and robustness of the SDN network. The undesirable

behavior of the SDN controller during a packet-in test would be if it was unable to

e�ectively process or respond appropriately to all packet-in messages. Here are some

possible undesirable behaviors of the controller:

• Overload: If the controller is not able to handle the high number of packet-

in messages, this can lead to an overload of the controller, which can cause

performance problems in the network.

• Delays: If the controller does not respond quickly enough to the packet-in

messages, this can cause delays in the network, resulting in poor performance

and user experience.

• Incorrect decisions: If the controller makes incorrect decisions or performs

incorrect actions due to overload or delays, this can cause errors in the network

that can lead to packet loss, network disruptions, or security problems.

Overall, inadequate, or ine�ective behavior of the controller during a packet-in-test

can lead to poor performance, scalability, and reliability of the SDN network [24].

This test is part of the DELTA Test set 3 - Advanced Tests (more about this in

3.1). However, the execution of this test was not possible, therefore this test has been

included in the program, allowing this test to be performed.

The decision was made to start packet-in �ooding after a Packet_Out message is

received. For this the send_packet_in(req_xid, tcp_socket) function is executed (see

Figure 5.3). In this function, Packet_In messages with all their required data contents

are created and sent to the SDN controller in a loop without interruption. Further

normal operation of the program is intentionally interrupted for this purpose.
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Figure 5.3: Packet_In
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In this chapter, the results of the test cases are presented and explained. In Section 5.1

the DELTA test cases were described in detail and in 5.2 the test cases which are

executed with the own program were described. These test cases were summarized in

Figure 6.1. The test cases are executed in the test environments in the order shown in

the table. This table thus serves as a guide and overview for the test executions.

Figure 6.1: Test cases

As explained in detail in Section 4.2, the test cases were performed in two test

environments, the virtual and the table setup. The setup is as follows, the order of

the tests were already de�ned by the Figure 6.1. First, the test cases were performed

in the virtual test environment. The goal of the virtual test environment is primarily

to check whether the tests are executable in general. After all, if a test is functional

there, it is due to the test itself if something does not work during execution on the

table setup use case. In addition, this test environment serves as a reference and

comparison value for the test execution in practice (on the table setup). After the

execution and determination of the results, the tests were performed on the table setup.
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The results of the tests performed were described as FAIL and PASS. This presentation

of results was adopted from DELTA because in DELTA the output of a test is FAIL
or PASS. FAIL means that the test was vulnerable to the attack, thus the attack was

successful. Accordingly, PASS indicates when an attack was not successful and thus no

vulnerability was identi�ed. The terminology was chosen so that the SDN controller

is tested to see if it can withstand attacks, i.e. to discover vulnerabilities and not to

carry out attacks with a malicious target.

6.1 Result by Test Case

2.1.010 – Malformed version number

Virtual test environment: The result of the test in which a malformed version number

is transmitted is FAIL. Figure 6.2 shows how a test or attack is started via DELTA and

what the result output looks like.

Figure 6.2: Attack started via DELTA

The malformed version number is performed after the handshake using OpenFlow

packet-in message. This process can be seen in Figure 6.3, which shows the log of the

channel agent. Here, the history of the Open�ow packets is displayed and it can be

seen at which point the attack is initiated and how the SDN controller reacts to it.
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Figure 6.3: Channel Agent log

The Agent Manager log, shown in Figure 6.4, displays what the setup looks like as

well as the general logging and noti�cation of the result.

Figure 6.4: Agent Manager log

According to the Agent Manager log, the result is FAIL because the SDN controller

response is NULL and DELTA speci�ed an OpenFlow Error Message as a prerequisite

for the test result PASS. A discussion of the result will be performed after the execution

at the table setup.

Table Setup In the next step, the test was performed on the table setup, again the

result is FAIL. Figure 6.5 shows the start and the result of the test in the console.
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Figure 6.5: Test performed on the table setup

The Agent Manager log is similar to Figure 6.4, except that the SDN controller is

the one from the tabletop setup and not one created virtually for testing purposes.

Summary, Evaluation and Measures At this point it becomes clear again that

DELTA is not necessarily an all-encompassing solution. Of course, it is a vulnerability

if the controller does not react with further actions, such as an error message. An Error

message would make it more emphasized that the SDN controller has detected the

anomaly and is thus resistant to the test. However, the SDN controller’s reaction may

well mean that the received packet is not authentic to it or that it violates a security

policy and for this reason it is discarded and no action is taken. For this reason, this

test and the improvement at this point should only be seen as a recommendation and

not as a hard criterion to better protect the SDN controller at this point.

A recommendation is as follows: If the SDN controller receives an OpenFlow mes-

sage that does not look legitimate or violates a security policy, it is better for the SDN

controller to send an error message to the switch instead of simply responding with

a NULL response. An error message would signal to the switch that the received

packet was rejected and why it was rejected. The switch could then handle the rejected

packet accordingly and take further action if necessary. Without an error message,

the switch could consider the received packet legitimate and forward it, which could

lead to security issues or network problems. An error message would also help the

SDN administrator identify the cause of the problem and take appropriate action to

protect the network.
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2.1.020 – Corrupted Control Message (Corrupted
Content)

Virtual Test Environment For an incomprehensible reason, this test could not be

performed in the virtual test environment. For this reason, only the test result of the

table setup is available.

Table Setup The result of the test in which a corrupted control message (corrupted

content) is used is FAIL. Figure 6.6 shows how a test or attack is started via DELTA

and what the result output looks like.

Figure 6.6: Test with corrupted message control

The Agent Manager log, shown in Figure 6.7, displays what the setup looks like as

well as the general logging and noti�cation of the result.

Figure 6.7: Agent Manager log

The Agent Manager log shows that the result is FAIL because the SDN controller

response is NULL and DELTA speci�ed an OpenFlow Error Message as a prerequisite

for the test result PASS.

Summary, Evaluation and Measures The recommendation and evaluation of

this result is the same as that already given for test case 2.1.010. With regard to

the non-functioning of the test in the virtual environment and the fact that no logs

were available for this, from which one could derive why this test was not feasible,
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a de�ciency or suggestion for improvement for DELTA has unfortunately also been

noticed at this point.

2.1.030 – Handshake without Hello

The test results for the virtual environment and for the table setup are identical and

the result is PASS in each case. This means that the SDN controller is protected against

this attack and has noticed the misbehavior of the switch and therefore no connection

was established. Figure 6.8 shows the course of the test on the basis of the Agent

Manager log of the table setup.

Figure 6.8: Agent Manager log

2.1.040 – Control Message before Hello

The test results for the virtual environment and for the table setup are identical and

the result is PASS in each case. This means that the SDN controller is protected against

this attack and has noticed the misbehavior of the switch and thus has not performed

any further actions with the switch. Figure 6.8 shows an excerpt of the Agent Manager

log and the result. Here we can see that the desired response from the SDN controller

is to ignore the message from the disconnected switch. In this case, it is appropriate

to ignore the message and not send an error message, since no connection has been

established and it therefore makes more sense to ignore the message.

Figure 6.9: Agent Manager log
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2.1.050 – Multiple Main Connection Request from
Same Switch

Virtual Test Environment When attempting to perform multiple main connection

requests from the same switch, the result for the virtual test environment is PASS. In

Figure 6.10, the log extract from the Agent Manager shows that the SDN controller of

the virtual test environment rejects the other same switch. Thus, the SDN controller

satis�es the desired behavior and does not expose any vulnerabilities.

Figure 6.10: Agent Manager log

Table Setup The result of running this test on the table setup is FAIL. The SDN

controller does not reject the other same switch as in the virtual test environment,

but accepts it (see Agent Manager log extract in Figure 6.11). This behavior has a

vulnerability that should not be underestimated.

Figure 6.11: Agent Manager log

Summary, Evaluation and Measures Performing this test revealed a vulnerability

in the SDN controller because it accepts multiple connection requests, and resulting

connections, from same switch. When a switch sends multiple main connection

requests to the same SDN controller, the controller should usually reject all but one.

However, if the controller accepts multiple main connections from the same switch
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instance, this could cause problems in the network. A vulnerability created by accepting

multiple main connections from the same switch instance is the possibility of attacks

designed to disrupt or manipulate network communications. For example, by sending

multiple main connection requests, an attacker can attempt to perform a Denial-

of-Service (DoS) attack or execute a Man-in-The-Middle (MiTM) attack. Accepting

multiple main connections can also cause network congestion and a�ect the operation

of the controller, ultimately leading to controller and/or network failure.

Therefore, it is important that the SDN controller ensures that only one main connec-

tion is accepted from the same switch instance to ensure the integrity, con�dentiality,

and availability of the network. One possible solution is for the controller to mon-

itor the source IP address and the source MAC address of the switch and reject the

additional requests if there are repeated connection requests from the same switch.

#0 - Initial Test

DELTA provided a GUI as well as a command Line Interface (CLI) to run tests and

analyze the results. In order to determine and analyze the results and impact of the test

cases performed by the self-written program, the use of Wireshark [27] was necessary.

Wireshark has an OpenFlow �lter to display the OpenFlow communication between

SDN controller and switch.

For the initial test that a connection can be successfully established between the

SDN controller and the simulated switch, Wireshark was used to check whether the

connection had been established and communication was taking place. Figure 6.12

shows a section of the communication. The switch starts communication with a Hello

message and receives one from the SDN controller, after which further communication

is established as described in 2.3.

41



6 Test Results

Figure 6.12: Wireshark

The test result for both the virtual test environment and the table setup is FAIL, as it

was possible to establish a successful connection with the respective SDN controller

in both test environments.

Summary, Evaluation and Measures A SDN controller typically captures net-

work topology information by receiving topology information from the SDN switches

in the network. If a spoofed switch can successfully connect to the controller, the

controller may think that this switch is also part of the network’s topology, even

though this is not the case. This can lead to incorrect decisions on the network, such as

routing or security policy enforcement. In addition, attacks and vulnerability testing

can proceed from the mistakenly connected switch. This is evident from the other

tests that will be conducted as part of this project. Therefore, it is important that

SDN networks are protected against such attacks by implementing mechanisms to

authenticate SDN switches and verify the authenticity of topology information.
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#2.1.020 – Corrupted Control Message (Corrupted
Content)

#2.1.020_a During Connection Setup For both the virtual test environment and

the table setup, the result of this test is PASS. In both cases, the SDN controller termin-

ates communication.

Summary, Evaluation and Measures It is su�cient to abort the communication

without sending an error message, since the corrupted control message was sent

directly during the connection setup. This case is similar to the result of 2.1.040, at this

point it is appropriate to ignore the message and not to send an error message, since

no connection was established.

#2.1.020_b During Normal Operation The result of the two test environments is

also the same in this case. Unfortunately, it cannot be decided exactly whether it is a

PASS or a FAIL. The behavior of the SDN controller is as follows, it does not abort the

communication, ignores the switch for a short time and repeats the request in a later

cycle.

Summary, Evaluation and Measures Since in this case it is a validated switch in

the network, the controller does not abort the communication directly, this is a desired

behavior. However, it also does not send an error message to signal that it has noticed

the corrupt content and to give reason to �x it, instead it re-sends its request, to which

it has received the non-expected response, at a later time. Thus, the decision whether

it is a FAIL or a PASS is not so easy to make. It depends on the requirements of the

SDN network and the behavior of the SDN controller. One recommendation would

be to send an error message to draw attention to the anomaly. However, this is not a

strict requirement to ensure security.
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#3.1.010 – Packet-in Flooding

The test result for both the virtual test environment and the table setup is PASS. The

SDN controller did not respond and could not be disabled. There was no impairments

of the SDN network while sending packet-in messages in either test environment.

6.2 Result Overview

An overview of the results can be seen in Figure 6.13.

Figure 6.13: Test results

Of the test cases in the virtual test environment, out of a total of nine test cases

(#2.1.020_a and #2.1.020_b are each considered a standalone test case), two tests had

found vulnerabilities, one failed (#2.1.020), one result could not be accurately determ-

ined (#2.1.020_b), and �ve tests passed.

In the test cases performed on the table setup, weak points occurred in four places,

one result cannot be determined exactly (#2.1.020_b) and four tests passed the test.
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The test results in the virtual test environment and the table setup are the same

with two exceptions. Firstly, test case 2.1.020 did not work in the virtual environment,

which in itself does not require any further interpretation. Second, test case 2.1.050
produced di�erent results in the test environments. This result raised more questions,

as it is exactly this vulnerability that can be considered critical. There may be several

reasons why the two SDN controllers behaved di�erently. One possibility is that the

tabletop SDN controller has other applications installed that are required for its use.

Depending on the content of these applications, they may a�ect the behavior of the

SDN controller. Another cause could be that the ONOS versions of the SDN controllers

di�er and the SDN controller of the virtual environment uses a more recent version

than the SDN controller of the tabletop setup. So it is possible that this vulnerability

will be �xed with an update of the ONOS version.
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Several observations were made during the execution of this project. Firstly, regarding

the hybrid approach of using both DELTA and a self-written program. Secondly, about

the security of the SDN controllers used.

Conclusion of the Hybrid Approach Regarding the quality of DELTA, it can be

said that it is a comprehensive framework to easily and e�ciently check the SDN

controller for vulnerabilities once the setup is complete. However, DELTA also has its

limitations, on the one hand it is di�cult to understand under which arguments a FAIL
and PASS is decided. This became clear in tests 2.1.010 and 2.1.020. To improve this

point, a multilevel evaluation would perhaps be more appropriate, which classi�es the

exposure to this vulnerability. Or an additional classi�cation which behavior of the

SDN controller is more threatening, because the behavior to ignore the message is

more harmless than the behavior to actively act on this message. Another point that

has been noticed with DELTA is that it is not very �exible in use. Tests that did not

work for reasons that were not clear, were unfortunately not modi�able, to solve the

problem. As a result, the handling was often very static and limited.

Analogously, the added value of the self-written program became clear here. The

initially intimidating e�ort to implement the basic functions of a switch paid o� in the

end in that a dynamically expandable program was available that could perform tests

in which DELTA functioned inaccurately or not at all. Dynamic is very important,

especially when testing for vulnerabilities. As we have seen from test case #2.1.020,

there are many variations on how this test could have been run. And you could also

modify several messages at this point to see what impact it has on the SDN controller

and thus continue the analysis for vulnerabilities in more detail.
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In conclusion, DELTA added value and was a good tool for evaluating the SDN

controller, but DELTA alone can still be expanded and is not su�cient for a detailed

test for vulnerabilities. For this reason, the use of a self-written program that imitates

a switch is more recommended, as the application can be made more �exible and

versatile in order to perform a reliable vulnerability analysis.

Conclusion of the Vulnerability Assessment By performing the test cases, or

attacks, some vulnerabilities were discovered. On one hand, the default ONOS con-

trollers themselves (since they also occurred in the virtual test environment), and on

the other hand, the con�gured SDN controller on the table setup. Recommendations

were primarily made for the failed tests, as this vulnerability does not lend itself

su�ciently to potentially threatening attacks. However, a non-minor vulnerability

was also discovered in the table setup, where it is possible to perform multiple main

connections from the same switch (test case 2.1.050). Solutions were proposed to solve

this vulnerability.

7.1 Perspective

Based on this project, a multitude of further projects would be possible. One approach

could be to deal more concretely with DELTA and to make intensive e�orts to make

the test cases modi�able, possibly there is also the possibility to add further test cases

to DELTA. A recommended approach would be to extend the self-written program

with further test cases or even to create several attack vectors to perform more complex

combinations of attacks. Pors [24] described that it is a promising possibility to attack

the SDN controller using error messages. This approach has already been prepared by

implementing in the program all the error messages that can be sent from a switch

to a SDN controller, so that they correspond to a real switch. Accordingly, it would

be possible to embed more complex attacks in the error messages directly at this

point. Another approach, based on the results of this project, would be to increase

the security of the SDN controller by implementing the measures proposed here. In

general, however, the hybrid approach pursued here is not recommended for further
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projects, since the handling of both approaches is too di�erent to be able to expand

both e�ciently at the same time.
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