This version of the contribution has been accepted for publication, after peer review but is not the Version of Record
and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:
https://doi.org/10.1007/978-3-031-97537-0_10. Use of this Accepted Version is subject to the publisher’s Accepted
Manuscript terms of use https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
If you cite this paper, please use the original reference: T. Héckel, P. Meyer, F. Korf, and T. C. Schmidt, “Securing
Future In-Vehicle Networks: Monitoring and Control for Ethernet Backbones,” in Engineering Safe and Trustworthy
Cyber Physical Systems. Springer Nature Switzerland, Oct. 2025, pp. 163—-182. DOI: 10.1007/978-3-031-97537-0_10.

Securing Future In-Vehicle Networks:
Monitoring and Control for Ethernet Backbones*

Timo Héckel, Philipp Meyer, Franz Korf, and Thomas C. Schmidt

Dept. Computer Science, Hamburg University of Applied Sciences (HAW), Germany
{timo.haeckel,philipp.meyer,franz.korf,t.schmidt}@haw-hamburg.de

Abstract. Vehicular systems are increasingly controlled by distributed
software components that demand a reliable and secure communica-
tion infrastructure. Ethernet and Time-Sensitive Networking (TSN) of-
fer a promising foundation for future high-bandwidth, real-time capable
In-Vehicle Networks (IVNs). Current IVNs, however, are vulnerable to
safety-compromising attacks, calling for a multifaceted security harden-
ing. In this paper, we present a control and monitoring framework that
guards safety and security throughout an attack-resistant real-time net-
work architecture with effective misbehavior detection. Software-Defined
Networking (SDN) control of TSN networks enables the enforcement of
security policies and the dynamic adaptation to changing conditions.
A combination of network monitoring techniques, traffic analysis, ob-
servable metrics, and detection algorithms tailored for automotive de-
ployment enable the detection of anomalies and attacks. This network-
centric approach enhances the security of existing automotive protocols
and Electronic Control Units (ECUs) of limited computing power and
remains extensible for future demands. Evaluation results from simula-
tions, a hardware test bed, and a real prototypic vehicle demonstrate the
feasibility, effectiveness, and remaining challenges of our approach.

Keywords: In-Vehicle Network - Time-Sensitive Networking - Software-
Defined Networking - Network Security - Network Monitoring - Anomaly
Detection

1 Introduction

Future software-defined vehicle systems |30] require the In-Vehicle Network (IVN)
to support high-bandwidth cross-domain communication, e.g., for Advanced
Driver Assistance Systems (ADASs). To meet these demands, network and com-
pute resources are centralized and shared among services. A real-time Ethernet
backbone [50] with Time-Sensitive Networking (TSN) [22] ensures efficient and
reliable communication.

* This work was supported in part by the German Federal Ministry of Education and
Research (BMBF) within the SecVI project.

https://doi.org/10.1007/978-3-031-97537-0_10
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
10.1007/978-3-031-97537-0_10

2 T. Hackel et al.

Integrating vehicles into global communication (Vehicle-to-X (V2X)) increases
the attack surface, which has been shown in real-world attacks |38|, necessitating
cybersecurity measures. Industry standards (e.g., ISO/SAE 21434 [24]) and leg-
islation (e.g., the European Cyber Resilience Act [13]) demand security measures
throughout the entire vehicle system and lifetime.

Securing vehicle access interfaces, performing plausibility checks, and en-
crypting critical data are important, but cannot rule out attacks reaching the
IVN itself [44]. The IVN is the backbone of the vehicle system, as it connects
all Electronic Control Units (ECUs) and enables communication. Manipulation
of the IVN can impair the safety of critical driving functions and even harm
passengers and other road users. Moreover, attacks can spread throughout the
network, necessitating zero-trust in network nodes to prevent their propagation.

A multilayered defense strategy is crucial to secure the IVN against misbe-
havior [51]. A network-centric approach ensures security for resource-constrained
ECUs and allows secure reuse of legacy devices. Precise control and isolation of
network flows are required to minimize the attack surface and prevent attacks
from spreading [51]. Effective network monitoring can detect misbehavior and
enable a fast response. All security measures must meet the real-time demands
of the IVN and remain compatible with existing protocols and devices.

In this work, we propose a monitoring and control architecture enhancing
security in future IVN. Our approach encompasses traffic control and network
monitoring, which we investigated in various previous work [14H18}[35136,[47].
Implementing an attack-resistant real-time network architecture, we ensure both
safety and security. To effectively detect misbehavior, we employ a combination
of monitoring techniques, network traffic analysis, and observed metrics tailored
for automotive deployment.

The remainder of this work is structured as follows: Sec. [2|reviews background
and related work. In Sec. [3| we present our control and observe architecture
for IVN security. Sec. [4] presents our evaluations in simulation, test beds, and
a prototype vehicle, demonstrating the practical application of our approach.
Finally, Sec. [f] concludes this work and outlines future work.

2 Background and Related Work

The race towards highly autonomous vehicles requires a new platform for their
Electrical/Electronic (E/E) architecture, and the automotive industry is moving
towards a software-defined vehicle architecture [30]. Multiple teams create com-
ponents in a highly modular fashion with increasing complexity for integration
and testing, and faster development cycles with frequent updates. The integra-
tion of such components requires contracts between components, formal timing
specifications, and computation and interaction models |8]. This shift poses new
challenges for the design of a secure IVN that can keep up with the increasing
dynamics.

Securing Future In-Vehicle Networks 3

10

© Domains
o

---- Ethernet
— Bus

aVWa Zonal
% Controller
Central

6 Compute

'

(a) Central Gateway Topology (b) Zonal Topology

Fig.1: IVN topology evolution from separate domains connected via a central
gateway (a), to a zonal topology (b) centralizing network and compute resources.

2.1 In-Vehicle Networks

Traditionally, vehicle control applications run on specialized ECUs that are con-
nected via heterogeneous networks, such as Controller Area Network (CAN),
Local Interconnect Network (LIN), Media Oriented System Transport (MOST),
FlexRay, and Ethernet. The current automotive E/E architecture (cf., Fig.
is divided into separate domains that are interconnected via a central gate-
way . Examples for these domains include the infotainment, drivetrain or
passenger comfort. The increasing number of specialized ECUs required for new
functions results in higher hardware overhead, leading to increased vehicle pro-
duction costs. Additionally, the growing complexity and strict domain separation
hinder flexibility.

Future applications require increased communication bandwidth and com-
putational resources, e.g., through high-resolution sensor fusion and ADAS for
automated vehicles . To cope with these demands central compute units in-
terconnected via high-bandwidth Ethernet are proposed @ In a zonal topology
(cf., Fig. , ECUs are grouped into zones according to their placement in the
vehicle, e.g., front, rear, and right, left side. Zonal controllers placed at the center
of each zone can combine functions of gateways, switches, and applications.

On the software layer this shift to more centralized resources is accompa-
nied by a shift to a dynamic Service-Oriented Architecture (SOA) [27]. Services
utilizing virtualized resources in containerized applications are considered for
improving the flexibility of the software architecture .

4 T. Hackel et al.

Fig. 2] shows a future protocol
stack for service-oriented communi-
cation via Ethernet . Scalable
service-Oriented MiddlewarE over IP

(SOME/IP) |[2]| is the most widely Transmission Control
deployed middleware for such an Pratzses) (U2 Protocol (TCP)

automotive SOA. Other candidates Internet Protocol (IPv4/IPv6)

such as Data Distribution Service
IEEE 802.1AS IEEE 802.1Q - 2018
Time Synchronization | Time-Sensitive Networking

(DDS) [42| are also considered, and
available in the AUTomotive Open

IEEE 802.3, e.g., 1000BASE-T1
Automotive Ethernet

System ARchitecture (AUTOSAR).
Both utilize UDP/TCP/IP for adap-
tive communication. TSN en- Fig. 2: The automotive protocol stack.
hances Ethernet to meet the real-time

requirements of the IVN. A header adds virtual LANs and a Priority Code
Point (PCP) from zero to seven. TSN devices (cf., Fig. |3) have gates at input
and output ports. A closed input gate drops incoming frames and a closed out-
put gate queues frames until it is open. Periodic Gate Control Lists (GCLs)
determine opening and closing times of gates. Ingress meters and egress shapers
complement the GCL functionality. It is important to note that while the ingress
can operate on a per-stream basis, the egress operates on per-priority queuing
using the frame PCP and shapes all streams of the same priority together. The
switching fabric forwards frames that pass ingress control to the egress control
of an outgoing port. Precise time synchronization via IEEE 802.1AS is nec-
essary to synchronize packet transmission and coordinate time between applica-
tions, ECUs, and network devices. We add fully programmable options for TSN
flows (cf., Sec. and utilize the Per-Stream Filtering and Policing (PSFP) for
network anomaly detection (cf., Sec. |3.5)).

Automotive Services

Per-Stream Enhancements for Scheduled
Filtering and Traffic
Policing

Transmission

Transmission
Selection

GCL TO: Co...o
c jiflSfoC™E
T2: CC..C

Fig. 3: TSN modules for ingress control and egress shaping.

Securing Future In-Vehicle Networks 5

2.2 In-Vehicle Network Security

Modern cars integrate with global communication, e.g., for V2X communica-
tion, which in turn provides a multitude of new interfaces. Current vehicles are
vulnerable to manipulation by third parties, which has been demonstrated in
the field [38]. A fundamental analysis of the automotive attack surface showing
how a variety of interfaces can be used to gain malicious access to in-car devices
is provided by Checkoway et al. |7]. Manipulation of ECUs and the IVN can
compromise the safety of the vehicle, putting passengers at risk.

Attacks on IVNs include Denial of Service (DoS), replay, spoofing, and falsified-
information attacks [11,[51]. They can be classified as alter attacks (modifying
data), listen attacks (monitoring data), disable attacks (denying services), and
forge attacks (inserting incorrect data) [39]. Defensive measures can be divided
into attack prevention, detection, and mitigation [51]. The key security objec-
tives for IVNs are availability (resources are accessible and deadlines are met),
integrity (accuracy and completeness of data), and authenticity (verifiability of
data sources and sinks) [111[39].

Integrity and authenticity can be ensured with authentication and encryp-
tion methods suitable for IVNs [21//40]. Encryption, however, cannot protect data
flows from all network attacks, e.g., DoS. Traditional in-vehicle ECUs have lim-
ited computing power which restricts resources for security features [40]. In addi-
tion, established and verified ECUs are used over many vehicle generations. Our
network-centric approach establishes an attack-resistant network (cf., Sec. [3.2))
and enables intrusion detection (cf., Sec. and that helps to secure ECUs
with limited computing power and allows secure reuse of legacy devices.

2.3 Attack-Resistant Network Architectures

Current multiple-access bus systems such as the CAN bus are missing flow con-
trol capabilities and thus do not allow for safety and security measures on the
network level. Gateways can only filter messages between different sections of
the IVN [49]. Firewalls and access control mechanisms can prevent attacks with
stateful inspection, rate limiting, and filtering [45]. Flexible security solutions,
such as software-defined security elements, will be beneficial to cope with the
growing dynamics of the IVN [11},48].

As software dynamics increase, they extend to the network level, where flows
must be established during runtime. Software-Defined Networking (SDN) [34] is
a promising solution to address the challenges posed by the growing dynamics
of IVN |14l|15/19]. In SDN, the control plane is separated from the data plane.
While traditional networks focus on individual end devices, SDN takes a more
holistic approach forwarding traffic based on flow rules that match packet headers
from Layer 2 to Layer 4. The control plane is logically centralized in the SDN
controller. This fundamental distinction allows SDN to offer greater flexibility,
adaptability, robustness, and security compared to traditional networks [53].

The logically centralized control plane can be physically distributed for hot-
standby and failover to avoid a single point of failure |20]. Additionally, security

6 T. Hackel et al.

elements may be vulnerable, especially in software functions. A compromised
SDN controller can be used to manipulate the network and bypass security
measures. Protection mechanisms have been investigated in the past [20] and
are out of scope of this work.

This work explores the potentials and challenges of a software-defined IVN
in design, simulation (cf., Sec. , and practical implementation in a prototype
vehicle (¢f., Sec. . The discussed potentials include enforcing real-time guar-
antees even for dynamic flows (cf., Sec. , protecting in-vehicle control flows
from malicious actors (cf., Sec. , incident response, and supporting specific
automotive protocols within the network (cf., Sec. .

2.4 Network Intrusion Detection

Network intrusion detection is a crucial component of any cybersecurity strat-
egy [52]. It enables reactive measures to be taken to prevent extended damage. A
multitude of approaches, datasets and challenges for network intrusion detection
have been proposed [4,28]. In the context of in-vehicle Ethernet networks, the de-
tection of malicious activities is particularly challenging due to domain specific
requirements, protocols, and missing large-scale deployments. Thus, matching
datasets for validation are rare and because there are just a handful of pro-
totypes with future Ethernet-based IVNs out in the wild concrete attacks are
rarely seen so far.

A comprehensive list of algorithm types can be used for network anomaly
detection [46]. Many of them are based on Machine Learning (ML) techniques
that require validation and verification similar to safety-critical applications for
future cars |9]. The real-time pattern of TSN-based Ethernet communication
can be beneficial for definition and learning of normal network behavior which
can significantly improve performance compared to non-real-time Ethernet envi-
ronments. It is promising that in-car traffic patterns effectively describe normal
behavior and that network anomaly detection methods can be used efliciently
to detect malicious activities and even zero-day attacks.

In this work, we explore two potential network anomaly detection architec-
tures for in-vehicle Ethernet networks. Our dedicated network anomaly detec-
tion (cf., Sec. can leverage advanced ML methods, while network-integrated
anomaly detection based on TSN ingress control (cf., Sec. exploits the al-
ready existing precise configuration of real-time patterns.

3 Control and Observe In-Vehicle Ethernet Backbones

Our control and observe architecture for in-vehicle Ethernet backbones is based
on two key concepts: (i) Software-Defined Networking (SDN) enables dynamic
reconfiguration for precisely separated traffic flows and builds an attack resis-
tant network architecture. (i) Network Anomaly Detection Systems (NADSs)
observe network flows, extract key traffic metrics, and detect misbehavior. Fig. [
illustrates the interaction between these components and the IVN.

Securing Future In-Vehicle Networks 7

n__—

Network Controller

(]
5 3.1 Real-Time 3.2 Secure | 3.3 Automotive 3.5 Integrated
% Flow Control = Flow Isolation Protocols Anomaly Detection
£ 4
S Flow Control Network State
B
5
o
3
3 Control Traffic Mirrored Control Traffic Anomaly Reports

[

3.4 Dedicated Anomaly Detection

U

Fig. 4: Overview of the network observation and management architecture.

Deploying SDN in cars logically separates the control plane from the data
plane, introducing a controller with global network knowledge. The control plane
is responsible for situational awareness. Specialized control applications program
the data plane based on the topology, traffic flows, Quality-of-Service (QoS)
requirements and security policies of the IVN. This improves flexibility, with
the ability to update and add services, and adapt to changes in communica-
tion. The data plane handles the actual data transmission and is subject to
real-time requirements that demand deterministic and predictable behavior. It
consists of a time-sensitive Ethernet backbone connecting vehicle control units
via switches. We demonstrate the applicability of SDN in cars, including central
control for real-time flows (¢f., Sec. , secure isolation of vehicle control flows
(cf., Sec. , and integration with existing automotive protocols (cf., Sec. .

Anomaly detection systems are a subtype of Intrusion Detection Systems
(IDSs) designed to identify deviations from normal behavior, which could indi-
cate malicious activity . NADSs monitor the data traffic to detect misbehavior.
Defining or learning normal behavior presents a significant challenge. We present
two approaches to fingerprint normal traffic and detect anomalies in IVNs: A
dedicated NADS based on ML that allows evaluation of varying inputs, metrics,
and algorithms (cf., Sec. . An integrated NADS (¢f., Sec. that exploits
predefined TSN configurations as definition of normal behavior, TSN switch
statistics as metrics, and a controller application as the detector.

The control and observe architecture can isolate traffic flows and their paths
in the network, while at the same time detect anomalies in allowed traffic flows.
Anomaly reports can be used along with network state information for dynamic
reconfiguration to mitigate the impact of attacks and ensure that driver, pas-
sengers, and manufacturer can be informed .

8 T. Hackel et al.

3.1 Software-Defined Real-Time Flow Control

We proposed Time-Sensitive Software-Defined Networking (T'SSDN) [14,15],
which combines TSN (¢f., Fig. and SDN for dynamic real-time communi-
cation. On the data plane, TSN endpoints are connected by switches that inte-
grate SDN forwarding with TSN real-time control: (i) PSFP applies filters and
time checks to incoming frames, (i) passing frames undergo flow table lookup
following SDN forwarding, and (4i7) TSN egress control shapes outbound traffic.

Control plane functions are offloaded to a central controller that performs
SDN address learning, routing, and TSN Stream Reservation (SR) and schedul-
ing. Data plane devices forward packets that do not match any flow rule to the
controller, where network applications decide whether to drop the packet, reply
directly, or forward it. For forwarding, the application determines a route and
installs flow rules on the data plane, enabling independent packet forwarding.

Reliable communication is crucial for safety-critical vehicle traffic. In the
TSN configuration, priority queues can be partitioned into static and dynamic
queues [32]. A static configuration with a separate flow table ensures correctness
and serves as a fail-safe in case of controller failure or security incidents. The
SDN controller handles additional dynamic traffic by identifying senders and
receivers, verifying permissions, and creating precise flows. Therefore, the control
plane requires adaptations for real-time traffic.

Asynchronous real-time flows in TSN use the Stream Reservation Protocol
(SRP) to dynamically announce resource requirements across the network. Talk-
ers announce streams with bandwidth demands, and interested listeners sub-
scribe. Devices along the path reserve bandwidth and shape the stream accord-
ingly in a transmission selection algorithm, e.g., Credit Based Shaping (CBS).

We map the centralized SR model (802.1Qcc), which aligns well with SDN,
to the OpenFlow protocol [14]. Talkers and listeners still use SRP for announce-
ments, and network devices forward them to the SDN controller. A network ap-
plication checks available bandwidth updates stream tables as listeners join or
leave, programs the switches with flow entries and allocates bandwidth. This en-
sures correct identification, forwarding, and bandwidth control for the stream [14].

In simulation studies (cf., Sec. , we found that the actual real-time data
transfer performs equally well as with TSN [14]. The dynamic SR, which is not
subject to real-time requirements in TSN, experiences a delay from traversing
the controller. This delay is generally small compared to the latency introduced
by cross-traffic and network schedules [15]. Since the SR is done in advance,
real-time flows are already installed in the TSSDN switches, avoiding further
controller inspection delays.

Synchronous real-time flows require coordination across multiple transmitters
and links. A periodic GCL (c¢f., Fig. [3)) controls priority gates to schedule time
slots for transmitters. Offline calculations determine fixed Time Division Multi-
ple Access (TDMA) schedules that cannot accommodate changes in communica-
tion as services are activated, shutdown, or updated. In TSSDN, the controller

Securing Future In-Vehicle Networks 9

can modify the GCL schedule and flow paths when synchronous traffic changes.
Time slots can be added, removed, or shifted within the period, and complex
operations such as rerouting can combine these actions.

At the egress, the GCL is scheduled per priority queue, not per flow. Adding
flows to TDMA-scheduled priorities without updating the GCL can cause queue
overflow and missed deadlines for critical traffic. This makes the dynamic nature
of SDN flow control unsuitable. In contrast, the NETCONF protocol [12] is well-
suited as it supports transaction-oriented configurations that ensure isolation
and allow verifying modifications before applying changes.

In simulation studies (cf., Sec. , we showed the need for multi-device
transactions to avoid queue overflow and packet loss during schedule reconfigu-
ration [15]. Moving a time slot in the schedule while a packet is in transit can
cause the packet to miss its time slot on the next device, causing a delay for
subsequent traffic of that priority. Therefore, updates must be executed simul-
taneously on all network devices or in a specific order based on the schedule
modifications.

3.2 Secure Isolation of In-Vehicle Control Flows

Despite the shift from static configuration to dynamic SOA, control flows of au-
tomotive services remain well-defined. A control flow consists of related messages
with the same unique identifier sent from one origin to one or more receivers via
the network. Each control flow belongs to a specific domain (e.g., drivetrain).

The automotive protocol stack (Fig. [2]) incorporates a service-oriented mid-
dleware (e.g., SOME/IP) that relies on transport, network, and data link layer
protocols. Protocol headers include control flow information to indicate the
transported information type to network and applications. SDN flows match
header fields from layer 2 to 4. The choice of control flow embedding determines
whether control flow information remains hidden or exposed to the network.

In the current state of the art, control flows are typically tunneled using an
application layer protocol (e.g., SOME/IP), which hides control flow identifiers
from the network. This limits separation capabilities and prevents distinguishing
between unique control flows in the network. However, control flow embedding
can also be fully exposed, with the control flow context embedded in packet
header fields used for network forwarding decisions. This enables perfect isolation
with one network flow per vehicle control flow. Recently, Nayak et al. introduced
a P4 |5] programmable data plane that supports SOME/IP [41], making the
SOME/IP header information available for forwarding decisions.

In previous work [15}/17,[18}36], we assessed the impact of control flow em-
bedding on traffic isolation in a realistic software-defined in-vehicle backbone
(¢f., Sec. . When devices participate in a hidden application layer tunnel,
e.g., for an entire domain, they can receive and send all control flows of this
domain. Exposed embedding enhances flow separation and isolation, restricting
communication to known and permitted relations and reducing eavesdropping
potential. Exposed embedding and SDN-based isolation require attackers to com-

10 T. Hackel et al.

promise the exact sender of each control flow on the Ethernet backbone to issue
messages in that channel, which reduces the attack surfaces.

3.3 Network Support for Automotive Protocols

Support for automotive application layer protocols on the SDN control plane op-
timizes flow control. Intercepting network control protocols is a common practice
to enhance networking objectives via SDN, such as improved Address Resolu-
tion Protocol (ARP) [1] or IP multicast routing |26]. Bertaux et al. |3| propose
an initial design for an SDN application that dynamically allocates network re-
sources for DDS services. Such an adaptation is needed for automotive protocols
to extend the mentioned advantages of SDN to dynamically discovered services.

SOME/IP is the most widely accepted protocol for automotive SOA. It pro-
vides a complementary Service Discovery (SD) to resolve service locations during
runtime. Further, it supports two communication schemes: (i) publish-subscribe
for data required on every change or cyclically, and (i) request-response if a
service is needed once or sporadically.

Open challenges and opportunities remain for supporting the SD and commu-
nication on the network level. The SOME/IP discovery lacks trust mechanisms,
access control, and authentication [25], which could be improved by network
intelligence. Lower layer QoS, such as TSN shaping, is not supported by the
dynamic SOA. A dedicated group management is needed for multicast groups,
which is not supported by regular Ethernet switches. Multiple instances of the
same service can exist, e.g., for redundancy or distribution, requiring network-
level support for resource reservation and fast handover.

We demonstrated that SDN can support the SOME/IP protocol using the
controller as a rendezvous point for SD [16]. This enables in-network caching
of service information and automatic path setup for communication, including
multicast support. We evaluated the performance of our approach in simulation
(¢f., Sec. , comparing its scalability to non-optimized SDN and standard
Ethernet switching. The central controller processing all SOME /IP SD messages
significantly reduces performance in both SDN approaches, but the delay only
affects subscription setup, not the actual data transfer (c¢f., TSN SR Sec. .
Our approach improved SDN performance by up to 50% compared to the non-
optimized SDN solution. This allows for potential extensions of a SOME /IP SD-
aware SDN for optimizing SD, service mobility, and reconfiguration mechanisms
to achieve improved robustness, QoS support, and security enhancements.

3.4 Dedicated Network Anomaly Detection with mirrored traffic

A dedicated NADS device can be easily added to existing networks. Integration
solely requires that forwarding devices can mirror all incoming traffic to an
interface with adequate bandwidth. The mirror interface links to a dedicated
NADS device (cf., Fig. 4) that captures and processes traffic at line rate.

Fig. |pa] shows the architecture of a dedicated NADS instance. Multiple in-
stances operate in parallel to observe multiple streams. Incoming traffic reaches

Securing Future In-Vehicle Networks 11

Network Anomaly Detection System (NADS) In-Vehicle Network (IVN)
Metric Network Controller
Filtering -Stream Recording (__NADS App (Anomaly Detection Algorithm))
1
T
Traffic Metrics NETCONF or OpenFlow, l

Switch 0 | Switch i

Interface Logging (Monitor (Metric Recording))
Interface 0 T Interface n

Per-Stream | Statistics Per-Stream

Filtering Filtering
Anomaly and and
Reports{ Reporting [« Results{ Detection [-Results Policing Policing
Algorithm

(a) Dedicated NADS for mirrored traffic. (b) Integrated NADS based on PSFP.

Fig. 5: Different approaches for network anomaly detection in IVNs.

a component that filters out non-observed traffic. Metrics (bandwidth, jitter,
average frame size) are extracted from the stream over a certain observation
interval and used as input for the anomaly detection component. The anomaly
detection component uses ML models (e.g., clustering, outlier detection, autoen-
coder) to train normal behavior and detect anomalies in the stream based on
the chosen metrics. Results are logged and reported notifying the network. In
our case, the reports are consumed by the SDN controller, which captures the
network-wide threat situation and can initiate countermeasures to mitigate the
anomaly, notify the driver, and forward reports to online infrastructure.

The dedicated NADS approach qualifies for straightforward deployment. A
modular interface attaches to a simulation environment (cf., Sec. 7 a test
bed (cf., Sec. , and a real-world IVN (¢f., Sec. . The different environ-
ments enable reproducible scenarios, automatic generation of labeled datasets,
manageable real-world conditions, and real driving scenarios.

ML based NADSs with appropriate performance require a substantial number
of datasets, which often must be labeled. Obtaining such datasets is challenging
because there are no future IVN cars in the wild that experience real attacks.
Datasets need to be build based on related data like e.g., attacks on current [VNs
or Ethernet networks in other domains. To overcome this, we use simulation
(cf., Sec. to generate datasets with different IVN architectures and a variety
of normal and attack scenarios.

False positives are a common issue in anomaly detection systems. They occur
when the system identifies a normal behavior as anomalous. False positives can
be particularly problematic in safety-critical in-car networks, as they lead to un-
necessary alerts, avoidable countermeasures, and decreased trust in the system.
Due to the short event cycles (e.g., < 1 second) in network communication, even
small false positive rates (e.g., 0,02%) can lead to multiple false positives during
one trip with a vehicle (e.g., > 6 false positives in 8 hours) [17].

12 T. Hackel et al.

3.5 Integrated Network Anomaly Detection with PSFP

Cyber-physical systems such as cars are subject to real-time requirements. This
property carries over to the IVN and is implemented on the link layer through
TSN protocols. Real-time Ethernet traffic shaping enforces patterns in commu-
nication behavior (e.g., , timings, gaps, sequences) that provide the opportunity
to fingerprint normal behavior [35].

Our integrated NADS approach utilizes the TSN standard Per-Stream Fil-
tering and Policing (PSFP) to define and enforce stream behaviors of incoming
traffic at forwarding devices (cf., Fig. . PSFP consists of stream filters that
match traffic to stream gates and flow meters. Stream gates can be open or
closed, either with a static configuration or synchronized and defined in the as-
sociated Gate Control List (GCL). Meters utilize algorithms to enforce stream
behavior, such as bandwidth, gap, and size. Individual frames that pass through
these stages are forwarded, marked, or dropped dependent on gate states and
meter results.

Fig. Bb] shows the NADS integration in a TSN network with a central con-
troller. Switches monitor statistics of their active features, such as packet coun-
ters. In our case, we use PSFP statistics to monitor stream behavior, including
the number of dropped frames. These statistics indicate violations of configured
thresholds, e.g., for timing, bandwidth, and frame size. When a frame violates
configured thresholds in PSFP and is dropped the statistic for the number of
dropped frames is increased. The SDN controller collects these statistics and
employs an anomaly detection application to detect abnormal behavior in the
specific stream. In a non-SDN network, central collection can still be imple-
mented by traditional network management systems, e.g., using SNMP.

The integrated approach is a lightweight solution for NADS as it utilizes
existing network components. Nevertheless, it has certain system requirements:
(i) the deployed switches must support PSFP, which filters incoming traffic and
defines normal traffic per stream. (%) The switches need to be manageable or
SDN capable to record statistics, serving as the metric recording component of
NADS. (#7) A central collector of statistics is required that acts as the detec-
tion algorithm of the NADS. In IVNs, all those requirements are in discussion
for future deployment regardless of network anomaly detection [6,/19]. Still, the
availability of hardware and software components is currently limited. There-
fore, we implemented the integrated approach in our simulation environment
(cf., Sec. [i.1)).

PSFP is configured at design time for ensuring safety and security of critical
traffic. It regulates normal traffic behavior, and a correctly configured PSFP will
not drop frames during design compliant operation. By utilizing such distinct
statistics for anomaly detection, the NADS operates without false positives [35],
which is a significant advantage of the integrated approach. The absence of false
positives is a solid foundation for automated countermeasures. Moreover, the per-
formance of anomaly detection does not depend on training with large datasets
but is solely influenced by the quality of the network design and sophistication
of the PSFP configuration.

Securing Future In-Vehicle Networks 13

4 Evaluation in Simulation and Real-World Deployments

The evaluation of the proposed concepts necessitates a multifaceted approach. A
simulation environment enables the exploration of new concepts, modifications
to standards, and novel algorithms within a controlled setting. A test bed facili-
tates performance assessment in a controlled hardware environment and verifies
their applicability in real-world deployments. A prototype based on a production
vehicle serves to demonstrate the feasibility of the proposed concepts.

4.1 In-Car Network Simulation for Reproducible Evaluation

Simulation studies are essential for reproducible evaluations of concepts and
algorithms in a controlled environment, particularly in the complex setting of
the IVN. A key advantage is the ability to compare results by changing a single
parameter at a time, such as topology, traffic patterns, shapers, network control
algorithms, and anomaly detection algorithms.
Our simulation environ-
SDN4CoRE J

ment (cf., Fig. [6) is based [
. NETCONF / TSN + SDN / SDN + SOME/IP
on OMNeT++, a discrete [SORACGRE NG

event simulator [43]. To sim- SOA + QoS, SOME/IP + SD

<

SignalsAndGateways) OpenFlow

ulate future IVNs, we use a CAN<->CAN / Ethernet<->CAN OpenFlow
combination of frameworks. Y CoREAINET L
The INET framework I43| is FiCoAOMNeT | |EEE 802.1Q / TSN / AVB / AS6802)

. . CAN / FlexRay INET framework
well-established in the net-) Ethernet / Internet Protocol / TCP / UDP
working community and pro- OMNeT -+

Discrete Event Simulator

vides networking modules for
a full Ethernet-IP-UDP/TCP
stack, including network de-
vices, hosts, and traffic generators. Our research group maintains a rich IVN sim-
ulation environmemﬂ including real-time Ethernet, bus systems such as CAN,
and gateways to translation [37]. Recent extensions added Service-Oriented
Architecture for Communication over Real-Time Ethernet (SOA4CoRE), and
Software-Defined Networking for Communication over Real-Time Ethernet
(SDN4CoRE) based on the OpenFlowOMNeTSuite [29].

A significant challenge arises from the gap between simulations and real-
world implementations. The level of abstraction in the simulation models results
in a trade-off between performance and realism. While our simulator accurately
represents network communication and control, it does not simulate actual ap-
plication behavior. To enhance realism, we incorporate traces collected in our
prototype vehicle (¢f., Sec. and model the communication relations of in-car
ECUs. Noteworthily, not all simulated features are available in real-world imple-
mentations, and the performance of components such as the SDN controller can
vary significantly [47]. Further, we observed differences between standards and
implementations, e.g., possible combinations of shapers in TSN switches.

Fig. 6: In-car network simulation environment.

! CoRE Frameworks for the OMNeT++ Simulator https://github.com/CoRE-RG

https://github.com/CoRE-RG

14 T. Hackel et al.

Simulations provide valuable insights and contribute to the advancement and
validation of our research. We modeled our TSSDN architecture (cf., Sec. ,
which is not yet available in hardware, and evaluated TSSDN performance for
IVN . We successfully implemented protocol extensions, e.g., anomaly
detection in the TSN ingress control (¢cf., Sec. and a SOME/IP aware
SDN control plane [16] (¢f., Sec. . To support anomaly detection, we collected
network traces from our prototype vehicle (cf., Sec. , which were used
for training, testing, and comparing ML algorithms.

4.2 Test Bed for Secure In-Vehicle Communication

Our test bed is a physical setup used to test and evaluate the performance and
security of IVN designs. It enables the evaluation of security measures and val-
idates real traffic characteristics for simulations (c¢f., Section |4.3]). Additionally,
it serves as preparation for real car deployment (cf., Section and indicates
hardware performance limitations.

Fig. [7] shows our test bed consist-
ing of an Ethernet backbone with an
OpenFlow-enabled switch, four zonal
controllers, and a set of ECUs. The
switch is divided into two virtual
Open vSwitch instances with pro-
grammable flow tables. Packet for-
warding is controlled by a central
ONOSP|SDN controller equipped with
custom applications following our con-
cepts (cf., Sec. . Each zonal con-
troller is connected to a CAN bus that
emulates messages of a production vehicle filtered for the corresponding zone. All
CAN messages are tunneled through the backbone to the corresponding desti-
nation ECUs and intermediate zonal controllers. One ECU employs an IoT edge
node for cloud connectivity 7 and additional ECUs generate high bandwidth
traffic such as video and raw LIDAR streams. Incoming packets are mirrored
in the switches to NADS instances for traffic monitoring in dedicated devices
(¢f., Sec. . Each NADS employs ML to fingerprint communication behavior,
and reports violations to the SDN controller.

Working with the test bed poses challenges in emulating real car traffic in
various vehicle states. Realistic stimuli involve playing back captured data and
creating additional stimuli such as LIDAR and camera streams. Finding suit-
able hardware, especially switches combining TSN and SDN, was difficult. Even
switches that implement either TSN or SDN had limitations in features and sta-
bility, restricting evaluations of concepts such as TSSDN and integrated NADS.
Furthermore, real pre-compiled automotive ECUs with the AUTOSAR platform

Fig. 7: IVN security test bed.

2 Open Network Operating System (ONOS) by the Open Networking Foundation
(ONF): https://opennetworking.org/onos/

https://opennetworking.org/onos/

Securing Future In-Vehicle Networks 15

are impractical for prototyping. Consequently, we chose a reliable SDN-only
switch and utilized established prototyping platforms such as the Raspberry Pi.

The test bed allows for experiments and evaluations, including long-term
tests that emulate continuous operation without a physical car running 24/7 .
This enables comprehensive evaluation of SDN controllers [47], connectivity gate-
ways, and anomaly detection strategies . We performed penetration tests to
assess vulnerabilities and potential attacks safely. Variants not supported by
conventional automotive software and hardware can be evaluated, for example,
security implications of different CAN-Ethernet embeddings and gateway
strategies that extend the SDN control plane to the gateways.

4.3 A Prototype with Security-Enhanced In-Vehicle Network

In collaboration with our industry partner, we integrated our concepts in a
modified production vehicle (¢f., Fig. . The car includes a security-enhanced
network in the trunk showcasing various aspects of the SecVI projeciﬂ .

Fig. 8: SecVI prototype with security-enhanced network installed in the trunk.

The installation follows a zone topology with four zonal controllers (left,
right, front, rear) serving as gateways between the in-vehicle CAN buses and our
Ethernet backbone. CAN messages are assigned to zones based on the position
of the sending ECU as defined in the communication matrix of our vehicle.
Additional communication along with powerful compute units for tasks such
as infotainment and cloud connectivity align the setup with future cars. For
monitoring and control of the Ethernet backbone, the prototype utilizes the
same setup as the test bed (cf., Sec. [4.2).

The integration of new concepts in the real car required significant effort,
making prior evaluations through simulation and test bed essential. Adapting
an existing production vehicle for new concepts poses challenges, considering
hardware limitations and uncertain future use cases such as ADAS, new sensor
data streams, and cloud connectivity. Nonetheless, the prototype demonstrates

3 German BMBF project SecVI: https://secvi.inet.haw-hamburg.de/

https://secvi.inet.haw-hamburg.de/

16 T. Hackel et al.

concept applicability in real-world deployments while revealing challenges that
need to be addressed before integration into production-grade vehicles.

Deploying our network control and monitoring architecture in the prototype
vehicle revealed that our robust SDN architecture significantly reduces the attack
surface of the IVN by limiting communication flows to the necessary ones while
enhancing adaptability [15//18]. Our ML-based NADS effectively detects attacks
in real-world deployments with minimal false positives for control and video
traffic [17,[36]. Additionally, our SDN successfully implements countermeasures
through network reconfiguration and service mobility to combat attacks |17].
When applying direct countermeasures to anomaly reports, however, future in-
car NADS should prioritize minimizing false positives over detection rates to
avoid service disruptions in the vehicle.

5 Conclusion and Outlook

Future cars require a robust and secure communication infrastructure. We in-
troduced our control and observe architecture for in-car Ethernet backbones.
TSSDN enables real-time flow control, secure isolation of in-vehicle control flows,
and network support for automotive protocols. A NADS provides a framework
for intrusion detection through machine learning algorithms on dedicated de-
vices, or integrated approaches using TSN ingress control (PSFP), for example.

To ensure accurate evaluations, we use a multifaceted approach: Simulations
provide a controlled setting to evaluate new concepts, a test bed facilitates per-
formance assessment in a hardware environment, and a prototype based on a pro-
duction vehicle serves to demonstrate the feasibility in a real-world deployment.
With this we demonstrated the effectiveness of our concepts and algorithms in
multiple studies.

Several open issues need to be addressed in future work. Firstly, there is a
need to optimize controllers for the vehicle use-case to ensure deterministic be-
havior in terms of latency and throughput [47]. Further investigation is required
to develop protection mechanisms for the controller. Additionally, evaluating
TSSDN in a hardware prototype is necessary. Real-time capable NADS algo-
rithms should be developed to enhance intrusion detection, and filtering NADS
false positives is important to reduce false alarms. A detailed comparison of dif-
ferent machine learning algorithms for various use cases and traffic types in the
vehicle is needed. Furthermore, exploring incident response tailored to IVN is
crucial for effectively addressing network security events. Finally, adaptive net-
work configuration and observation are necessary for agile software development
in future cars.

References
1. Alharbi, T., Portmann, M.: SProxy ARP - Efficient ARP Handling in SDN. In:

2016 26th International Telecommunication Networks and Applications Conference
(ITNAC). IEEE (Dec 2016). https://doi.org/10.1109/atnac.2016.7878805

https://doi.org/10.1109/atnac.2016.7878805
https://doi.org/10.1109/atnac.2016.7878805

10.

11.

12.

13.

Securing Future In-Vehicle Networks 17

. AUTomotive Open System ARchitecture =~ (AUTOSAR) Consortium:

SOME/IP Protocol Specification. Tech. Rep. 696, AUTOSAR (Nov 2021).
https://www.autosar.org/fileadmin/standards/R22-11/F0/AUTOSAR_PRS_
SOMEIPProtocol.pdf

Bertaux, L., Hakiri, A., Medjiah, S., Berthou, P., Abdellatif, S.: A DDS/SDN Based
Communication System for Efficient Support of Dynamic Distributed Real-Time
Applications. In: 2014 IEEE/ACM 18th International Symposium on Distributed
Simulation and Real Time Applications. pp. 77-84. IEEE (Oct 2014). https://
doi.org/10.1109/ds-rt.2014.18

Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network Anomaly Detection:
Methods, Systems and Tools. IEEE Communications Surveys & Tutorials 16(1),
303-336 (Jan 2014). https://doi.org/10.1109/SURV.2013.052213.00046
Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., Walker, D.: P4: Programming Protocol-
Independent Packet Processors. SIGCOMM Comput. Commun. Rev. 44(3), 87-95
(Jul 2014). https://doi.org/10.1145/2656877.2656890

Brunner, S., Roder, J., Kucera, M., Waas, T.: Automotive E/E-Architecture
Enhancements by Usage of Ethernet TSN. In: 2017 13th Workshop on Intelli-
gent Solutions in Embedded Systems (WISES). pp. 9-13. IEEE (2017). https:
//doi.org/10.1109/WISES.2017.7986925

Checkoway, S., Mccoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive Experimental
Analyses of Automotive Attack Surfaces. In: Proceedings of the 20th USENIX
Security Symposium. vol. 4, pp. 77-92. USENIX Association (Aug 2011). http:
//www.autosec.org/pubs/cars-usenixsec2011.pdf

Damm, W., Ehmen, G., Griittner, K., Ittershagen, P., Koopmann, B., Poppen,
F., Stierand, I.: Multi-Layer Time Coherency in the Development of ADAS/AD
Systems: Design Approach and Tooling. In: Proceedings of the Workshop on Design
Automation for CPS and IoT (DESTION’19). pp. 20-30. ACM (Apr 2019). https:
//doi.org/10.1145/3313151.3313167

Damm, W., Franzle, M., Gerwinn, S., Kroger, P.: Perspectives on the Validation
and Verification of Machine Learning Systems in the Context of Highly Automated
Vehicles. In: 2018 AAAI Spring Symposia. pp. 512-515. AAAT Press (2018).
Damm, W., Frinzle, M., Liidtke, A., Rieger, J.W., Trende, A., Unni, A.: Integrating
Neurophysiological Sensors and Driver Models for Safe and Performant Automated
Vehicle Control in Mixed Traffic. In: Intelligent Vehicles Symposium (IV 2019). pp.
82-89. IEEE (2019). https://doi.org/10.1109/IVS.2019.8814188

Dibaei, M., Zheng, X., Jiang, K., Abbas, R., Liu, S., Zhang, Y., Xiang, Y., Yu, S.:
Attacks and defences on intelligent connected vehicles: a survey. Digital Commu-
nications and Networks 6(4), 399-421 (Nov 2020). https://doi.org/10.1016/j.
dcan.2020.04.007

Enns, R., Bjorklund, M., Schoenwaelder, J., Bierman, A.: Network Configuration
Protocol (NETCONF). RFC 6241, IETF (Jun 2011)

European Parliament, Council of the European Union: Regulation (EU) 2019/881
of the European Parliament and of the Council of 17 April 2019 on ENISA (the
European Union Agency for Cybersecurity) and on information and communi-
cations technology cybersecurity certification and repealing Regulation (EU) No
526/2013 (Cybersecurity Act). Official Journal of the European Union (Apr 2019),
https://eur-lex.europa.eu/eli/reg/2019/881/0j

https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://doi.org/10.1109/ds-rt.2014.18
https://doi.org/10.1109/ds-rt.2014.18
https://doi.org/10.1109/ds-rt.2014.18
https://doi.org/10.1109/ds-rt.2014.18
https://doi.org/10.1109/SURV.2013.052213.00046
https://doi.org/10.1109/SURV.2013.052213.00046
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1109/WISES.2017.7986925
https://doi.org/10.1109/WISES.2017.7986925
https://doi.org/10.1109/WISES.2017.7986925
https://doi.org/10.1109/WISES.2017.7986925
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
https://doi.org/10.1145/3313151.3313167
https://doi.org/10.1145/3313151.3313167
https://doi.org/10.1145/3313151.3313167
https://doi.org/10.1145/3313151.3313167
https://doi.org/10.1109/IVS.2019.8814188
https://doi.org/10.1109/IVS.2019.8814188
https://doi.org/10.1016/j.dcan.2020.04.007
https://doi.org/10.1016/j.dcan.2020.04.007
https://doi.org/10.1016/j.dcan.2020.04.007
https://doi.org/10.1016/j.dcan.2020.04.007
https://eur-lex.europa.eu/eli/reg/2019/881/oj

18

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

T. Hackel et al.

Hackel, T., Meyer, P., Korf, F., Schmidt, T.C.: Software-Defined Networks Sup-
porting Time-Sensitive In-Vehicular Communication. In: Proc. of the IEEE 89th
Vehicular Technology Conference: VI'C2019-Spring. pp. 1-5. IEEE (Apr 2019).
https://doi.org/10.1109/VTCSpring.2019.8746473

Hiackel, T., Meyer, P., Korf, F., Schmidt, T.C.: Secure Time-Sensitive Software-
Defined Networking in Vehicles. IEEE Transactions on Vehicular Technology 72(1),
35— 51 (Jan 2023). https://doi.org/10.1109/TVT.2022.3202368

Héackel, T., Meyer, P., Mueller, M., Schmitt-Solbrig, J., Korf, F., Schmidt, T.C.:
Dynamic Service-Orientation for Software-Defined In-Vehicle Networks. In: Proc.
of the IEEE 97th Vehicular Technology Conference (VT C2023-Spring). IEEE (Jun
2023). https://doi.org/10.1109/VTC2023-Spring57618.2023.10199712

Hackel, T., Meyer, P., Stahlbock, L., Langer, F., Eckhardt, S.A., Korf, F., Schmidt,
T.C.: A Multilayered Security Infrastructure for Connected Vehicles — First Lessons
from the Field. Presented at: 2022 IEEE Intelligent Vehicles Symposium Workshops
(IV Workshops). (May 2022). arXiv preprint https://doi.org/10.48550/arXiv.
2310.10336

Hackel, T., Schmidt, A., Meyer, P., Korf, F., Schmidt, T.C.: Strategies for Integrat-
ing Controls Flows in Software-Defined In-Vehicle Networks and Their Impact on
Network Security. In: 2020 IEEE Vehicular Networking Conference (VNC). IEEE
(DeC 2020). https://doi.org/10.1109/VNC51378.2020.9318372

Haeberle, M., Heimgaertner, F., Loehr, H., Nayak, N., Grewe, D., Schildt, S.,
Menth, M.: Softwarization of Automotive E/E Architectures: A Software-Defined
Networking Approach. In: 2020 IEEE Vehicular Networking Conference (VNC).
pp. 1-8. IEEE (Dec 2020). https://doi.org/10.1109/VNC51378.2020.9318389
Han, T., Jan, S.R.U., Tan, Z., Usman, M., Jan, M.A., Khan, R., Xu, Y.: A com-
prehensive survey of security threats and their mitigation techniques for next-
generation SDN controllers. Concurrency and Computation: Practice and Experi-
ence 32(16), 1-21 (2020). https://doi.org/10.1002/cpe.5300

Hu, Q., Luo, F.: Review of Secure Communication Approaches for In-Vehicle Net-
work. International Journal of Automotive Technology 19(5), 879-894 (Sep 2018).
https://doi.org/10.1007/s12239-018-0085-1

IEEE 802.1 Working Group: IEEE Standard for Local and Metropolitan Area
Network—Bridges and Bridged Networks. Standard Std 802.1Q-2018 (Revision of
IEEE Std 802.1Q-2014), IEEE (Jul 2018). https://doi.org/10.1109/IEEESTD.
2018.8403927

Institute of Electrical and Electronics Engineers: IEEE Standard for Local and
Metropolitan Area Networks—Timing and Synchronization for Time-Sensitive
Applications. Standard, IEEE (Mar 2020). https://doi.org/10.1109/IEEESTD.
2020.9121845

International Organization for Standardization: Road vehicles — Cybersecurity en-
gineering. Standard ISO/SAE DIS 21434, ISO, Geneva, CH (2020)

Torio, M., Reineri, M., Risso, F., Sisto, R., Valenza, F.: Securing SOME/IP for In-
Vehicle Service Protection. IEEE Transactions on Vehicular Technology 69(11),
13450-13466 (Nov 2020). https://doi.org/10.1109/tvt.2020.3028880

Islam, S., Muslim, N., Atwood, J.W.: A Survey on Multicasting in Software-Defined
Networking. IEEE Communications Surveys & Tutorials 20(1), 355-387 (2018).
https://doi.org/10.1109/comst.2017.2776213

Kampmann, A., Alrifaece, B., Kohout, M., Wiistenberg, A., Woopen, T., Nolte,
M., Eckstein, L., Kowalewski, S.: A Dynamic Service-Oriented Software Archi-
tecture for Highly Automated Vehicles. In: 2019 IEEE Intelligent Transportation

https://doi.org/10.1109/VTCSpring.2019.8746473
https://doi.org/10.1109/VTCSpring.2019.8746473
https://doi.org/10.1109/TVT.2022.3202368
https://doi.org/10.1109/TVT.2022.3202368
https://doi.org/10.1109/VTC2023-Spring57618.2023.10199712
https://doi.org/10.1109/VTC2023-Spring57618.2023.10199712
https://doi.org/10.48550/arXiv.2310.10336
https://doi.org/10.48550/arXiv.2310.10336
https://doi.org/10.48550/arXiv.2310.10336
https://doi.org/10.48550/arXiv.2310.10336
https://doi.org/10.1109/VNC51378.2020.9318372
https://doi.org/10.1109/VNC51378.2020.9318372
https://doi.org/10.1109/VNC51378.2020.9318389
https://doi.org/10.1109/VNC51378.2020.9318389
https://doi.org/10.1002/cpe.5300
https://doi.org/10.1002/cpe.5300
https://doi.org/10.1007/s12239-018-0085-1
https://doi.org/10.1007/s12239-018-0085-1
https://doi.org/10.1109/IEEESTD.2018.8403927
https://doi.org/10.1109/IEEESTD.2018.8403927
https://doi.org/10.1109/IEEESTD.2018.8403927
https://doi.org/10.1109/IEEESTD.2018.8403927
https://doi.org/10.1109/IEEESTD.2020.9121845
https://doi.org/10.1109/IEEESTD.2020.9121845
https://doi.org/10.1109/IEEESTD.2020.9121845
https://doi.org/10.1109/IEEESTD.2020.9121845
https://doi.org/10.1109/tvt.2020.3028880
https://doi.org/10.1109/tvt.2020.3028880
https://doi.org/10.1109/comst.2017.2776213
https://doi.org/10.1109/comst.2017.2776213

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Securing Future In-Vehicle Networks 19

Systems Conference (ITSC). pp. 2101-2108. IEEE (2019). https://doi.org/10.
1109/ITSC.2019.8916841

Khraisat, A., Gondal, 1., Vamplew, P., Kamruzzaman, J.: Survey of intrusion de-
tection systems: techniques, datasets and challenges. Cybersecurity 2(1) (jul 2019).
https://doi.org/10.1186/s42400-019-0038-7

Klein, D., Jarschel, M.: An OpenFlow extension for the OMNeT++ INET frame-
work. In: Proceedings of the 6th International ICST Conference on Simulation
Tools and Techniques. pp. 322-329. SimuTools '13, ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), Brussels, BEL
(2013)

Laclau, P., Bonnet, S., Ducourthial, B., Li, X., Lin, T.: Predictive Network Con-
figuration with Hierarchical Spectral Clustering for Software Defined Vehicles. In:
Proc. of the IEEE 97th Vehicular Technology Conference (VTC2023-Spring). IEEE
(Jun 2023) https://doi.org/10.1109/VTC2023-Spring57618.2023. 10199920
Langer, F., Schiippel, F., Stahlbock, L.: Establishing an Automotive Cyber Defense
Center. In: 17th escar Europe : embedded security in cars (2019). https://doi.
org/10.13154/294-6652

Leonardi, L., Bello, L.L., Patti, G.: Bandwidth partitioning for Time-Sensitive
Networking flows in automotive communications. IEEE Communications Letters
pp. 1-1 (2021). https://doi.org/10.1109/1comm.2021.3103004

Matheus, K., Konigseder, T.: Automotive Ethernet. Cambridge University Press,
Cambridge (2015)

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: Enabling Innovation in Campus Networks.
ACM SIGCOMM Computer Communication Review 38(2), 6974 (2008). https:
//doi.org/10.1145/1355734.1355746

Meyer, P., Hackel, T., Korf, F., Schmidt, T.C.: Network Anomaly Detection in Cars
based on Time-Sensitive Ingress Control. In: Proc. of the IEEE 21th Vehicular
Technology Conference: VT C2020-Fall. IEEE (Oct 2020). https://doi.org/10.
1109/VTC2020-Fal149728.2020.9348746

Meyer, P., Hackel, T., Langer, F., Stahlbock, L., Decker, J., Eckhardt, S.A., Korf,
F., Schmidt, T.C., Schiippel, F.: Demo: A security infrastructure for vehicular
information using SDN, intrusion detection, and a defense center in the cloud. In:
2020 IEEE Vehicular Networking Conference (VNC). IEEE (Dec 2020). https:
//doi.org/10.1109/VNC51378.2020.9318351

Meyer, P., Korf, F., Steinbach, T., Schmidt, T.C.: Simulation of Mixed Critical In-
vehicular Networks. In: Virdis, A., Kirsche, M. (eds.) Recent Advances in Network
Simulation. EAI/Springer Innovations in Communication and Computing (May
2019), https://link.springer.com/chapter/10.1007/978-3-030-12842-5_10
Miller, C., Valasek, C.: Remote Exploitation of an Unaltered Passenger Vehicle.
Black Hat USA 2015, 91 (2015), https://ericberthomier.fr/IMG/pdf/remote_
car_hacking.pdf

Monteuuis, J.P., Boudguiga, A., Zhang, J., Labiod, H., Servel, A., Urien, P.:
SARA: Security Automotive Risk Analysis Method. In: Proceedings of the 4th
ACM Workshop on Cyber-Physical System Security. pp. 3—14. CPSS ’18, ACM
(2018). https://doi.org/10.1145/3198458.3198465

Mundhenk, P.: Security for Automotive Electrical /Electronic (E/E) Architectures.
Cuvillier, Gottingen (Aug 2017). https://doi.org/10.32657/10220/45957
Nayak, N., Ambalavanan, U., Thampan, J.M., Grewe, D., Wagner, M., Schildt, S.,
Ott, J.: Reimagining Automotive Service-Oriented Communication: A Case Study

https://doi.org/10.1109/ITSC.2019.8916841
https://doi.org/10.1109/ITSC.2019.8916841
https://doi.org/10.1109/ITSC.2019.8916841
https://doi.org/10.1109/ITSC.2019.8916841
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1109/VTC2023-Spring57618.2023.10199920
https://doi.org/10.1109/VTC2023-Spring57618.2023.10199920
https://doi.org/10.13154/294-6652
https://doi.org/10.13154/294-6652
https://doi.org/10.13154/294-6652
https://doi.org/10.13154/294-6652
https://doi.org/10.1109/lcomm.2021.3103004
https://doi.org/10.1109/lcomm.2021.3103004
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348746
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348746
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348746
https://doi.org/10.1109/VTC2020-Fall49728.2020.9348746
https://doi.org/10.1109/VNC51378.2020.9318351
https://doi.org/10.1109/VNC51378.2020.9318351
https://doi.org/10.1109/VNC51378.2020.9318351
https://doi.org/10.1109/VNC51378.2020.9318351
https://link.springer.com/chapter/10.1007/978-3-030-12842-5_10
https://ericberthomier.fr/IMG/pdf/remote_car_hacking.pdf
https://ericberthomier.fr/IMG/pdf/remote_car_hacking.pdf
https://doi.org/10.1145/3198458.3198465
https://doi.org/10.1145/3198458.3198465
https://doi.org/10.32657/10220/45957
https://doi.org/10.32657/10220/45957

20

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

T. Hackel et al.

on Programmable Data Planes. IEEE Vehicular Technology Magazine pp. 69-79
(Jan 2023). https://doi.org/10.1109/mvt.2022.3225787

Object Management Group: Data Distribution Service. Standard DDS 1.4, OMG
(Mar 2015), http://www.omg.org/spec/DDS/1.4

OpenSim Ltd.: OMNeT++ Discrete Event Simulator and the INET Framework,
https://omnetpp.org/

Pekaric, 1., Sauerwein, C., Haselwanter, S., Felderer, M.: A taxonomy of attack
mechanisms in the automotive domain. Computer Standards & Interfaces 78,
103539 (Oct 2021). https://doi.org/10.1016/j.csi.2021.103539

Pesé, M.D., Schmidt, K., Zweck, H.: Hardware/Software Co-Design of an Automo-
tive Embedded Firewall. In: SAE Technical Paper. SAE International (Mar 2017).
https://doi.org/10.4271/2017-01-1659

Rajbahadur, G.K., Malton, A.J., Walenstein, A., Hassan, A.E.: A Survey of
Anomaly Detection for Connected Vehicle Cybersecurity and Safety. In: 2018
IEEE Intelligent Vehicles Symposium (IV). IEEE (Jun 2018). https://doi.org/
10.1109/ivs.2018.8500383

Rotermund, R., Héackel, T., Meyer, P., Korf, F., Schmidt, T.C.: Requirements
Analysis and Performance Evaluation of SDN Controllers for Automotive Use
Cases. In: 2020 IEEE Vehicular Networking Conference (VNC). IEEE (Dec 2020).
https://doi.org/10.1109/VNC51378.2020.9318378

Rumez, M., Grimm, D., Kriesten, R., Sax, E.: An Overview of Automotive Service-
Oriented Architectures and Implications for Security Countermeasures. IEEE Ac-
cess 8, 221852-221870 (2020). https://doi.org/10.1109/ACCESS.2020.3043070
Rumez, M., Duda, A., Grunder, P., Kriesten, R., Sax, E.: Integration of Attribute-
based Access Control into Automotive Architectures. In: 2019 IEEE Intelligent Ve-
hicles Symposium (IV). IEEE (Jun 2019). https://doi.org/10.1109/ivs.2019.
8814265

Steinbach, T.: Ethernet-basierte Fahrzeugnetzwerkarchitekturen fiir zukiinftige
Echtzeitsysteme im Automobil. Springer Vieweg, Wiesbaden (Oct 2018). https:
//doi.org/10.1007/978-3-658-23500-0

Thing, V.L.L., Wu, J.: Autonomous Vehicle Security: A Taxonomy of At-
tacks and Defences. In: 2016 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData). IEEE (Dec 2016). https://doi.org/10.1109/
ithings-greencom-cpscom-smartdata.2016.52

Waszecki, P., Mundhenk, P., Steinhorst, S., Lukasiewycz, M., Karri, R.,
Chakraborty, S.: Automotive Electrical and Electronic Architecture Security via
Distributed In-Vehicle Traffic Monitoring. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 36(11), 1790-1803 (Nov 2017). https:
//doi.org/10.1109/TCAD.2017.2666605

Yurekten, O., Demirci, M.: SDN-based cyber defense: A survey. Future Genera-
tion Computer Systems 115, 126-149 (Feb 2021). https://doi.org/10.1016/j.
future.2020.09.006

https://doi.org/10.1109/mvt.2022.3225787
https://doi.org/10.1109/mvt.2022.3225787
http://www.omg.org/spec/DDS/1.4
https://omnetpp.org/
https://doi.org/10.1016/j.csi.2021.103539
https://doi.org/10.1016/j.csi.2021.103539
https://doi.org/10.4271/2017-01-1659
https://doi.org/10.4271/2017-01-1659
https://doi.org/10.1109/ivs.2018.8500383
https://doi.org/10.1109/ivs.2018.8500383
https://doi.org/10.1109/ivs.2018.8500383
https://doi.org/10.1109/ivs.2018.8500383
https://doi.org/10.1109/VNC51378.2020.9318378
https://doi.org/10.1109/VNC51378.2020.9318378
https://doi.org/10.1109/ACCESS.2020.3043070
https://doi.org/10.1109/ACCESS.2020.3043070
https://doi.org/10.1109/ivs.2019.8814265
https://doi.org/10.1109/ivs.2019.8814265
https://doi.org/10.1109/ivs.2019.8814265
https://doi.org/10.1109/ivs.2019.8814265
https://doi.org/10.1007/978-3-658-23500-0
https://doi.org/10.1007/978-3-658-23500-0
https://doi.org/10.1007/978-3-658-23500-0
https://doi.org/10.1007/978-3-658-23500-0
https://doi.org/10.1109/ithings-greencom-cpscom-smartdata.2016.52
https://doi.org/10.1109/ithings-greencom-cpscom-smartdata.2016.52
https://doi.org/10.1109/ithings-greencom-cpscom-smartdata.2016.52
https://doi.org/10.1109/ithings-greencom-cpscom-smartdata.2016.52
https://doi.org/10.1109/TCAD.2017.2666605
https://doi.org/10.1109/TCAD.2017.2666605
https://doi.org/10.1109/TCAD.2017.2666605
https://doi.org/10.1109/TCAD.2017.2666605
https://doi.org/10.1016/j.future.2020.09.006
https://doi.org/10.1016/j.future.2020.09.006
https://doi.org/10.1016/j.future.2020.09.006
https://doi.org/10.1016/j.future.2020.09.006

	Securing Future In-Vehicle Networks:Monitoring and Control for Ethernet Backbones

