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ABSTRACT

Autonomous driving is one of the most challenging tasks of the
automotive industry. As a subtask, the estimation of driveable and
non driveable space is often solved by applying occupancy grids.
The information about non driveable space can be used to improve
object tracking. This paper presents an approach for object track-
ing and modelling in an occupancy grid map. Tracking objects on
grid cells yields the advantage of a consistent environmental model
on the occupancy grid map. We introduce the occupancy grid map
as the only information source for the object tracking module. Tak-
ing advantage of the Dempster Shafer theory, a dynamic belief of
conflicting cells can be estimated. This dynamic belief is then ac-
cumulated in a tracked object model. This is a grid based free form
object model that uses an object local grid map representation to
model vehicles in urban environment. We reduce false positives
and initialization time by maintaining a dynamic belief for each
object.

1. INTRODUCTION

An accurate environmental perception is a requirement for ad-
vanced driver assistant systems (ADAS) and mandatory for au-
tonomous vehicles. As a modeling technique of the static envi-
ronment, the occupancy grid framework proposed in [1] has dom-
inated the scope and has been applied successfully to multiple
systems [2] [3]. The original version of occupancy grid map-
ping suffers from artefacts produced by dynamic objects [4]. To
prevent these issues, there are several techniques to filter out dy-
namic information or use them to set up grid map based track-
ing approaches. The basic idea of occupancy grid mapping is to
model the environment as a set of discrete cells containing prob-
abilities of the presence (occupancy) or absence (freeness) of an
object. Elfes [1] proposes using a binary bayesian filter model-
ing the probability that a cell is occupied. In recent literature this
idea has been extended by the Dempster Shafer theory (DST) us-
ing independent belief masses for occupancy and freeness. This
enables the resolution of conflicts between independent contradic-
tory measurements. Moras [5] presents an approach using an evi-
dential dynamic detection based on the measured conflict of a cell.
We extend this dynamic detection with an estimation that a cell is
static using neighbouring cells.
Representing a consistent environment model on grid maps includ-
ing dynamic objects turns out to be a challenge. Modelling object
dynamics in grid maps is described in several publications [5] [3]
[2]. However there are still open questions how to use the extended
information generated by a grid map in the object tracking later on.
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Two basic techniques exist for modelling dynamics in occupancy
grid maps.

• Cell attribute extension: extend each grid cell with dynamic
information and track each of these cells individually [6].

• Associate cells to Tracks: associate a grid cell or cluster to
a separated filter and keep track of the moving cells inde-
pendently such as proposed in [3] [2].

Using the cell association technique for object tracking, informa-
tion can be gathered in two ways [7]:

• Extract features describing the tracked object from an oc-
cupancy grid map and transform these feature to vehicle
coordinates. A feature can be the shape or contour of an
object. The tracking uses the extracted features to update
the object states.

• Use the cell representation of the occupancy grid map di-
rectly in object tracking. The object state is represented in
grid coordinates and is updated by a set of cells.

In this paper we propose a novel approach using grid cells ex-
tended with dynamic belief masses to set up and validate new ob-
ject tracks. Using theses grid cells we associate multiple cells to a
moving object employing the cell representation directly to update
the object state.
We set up particle filtered objects that accumulate dynamic mea-
surements in a separated Dempster Shafer belief mass. These ac-
cumulated belief masses will determine if the target is generated
from clutter or from a real moving object (false positive reduc-
tion). In some highway scenarios, the tracking suffers from uncer-
tain distance measurements of the road boundary. In such scenar-
ios we use dynamic beliefs for pruning ghost objects before they
could produce failures in driver assistant systems. We show that
dynamic cell tracking could be used in urban and highway scenar-
ios (see section 4).
We use a particle filter to track a dynamic cell cluster and then con-
ceptually detach these cells and put them into an object local grid.
Each particle consist of a cluster of grid cells. Therefore a particle
set allows free form modelling on multiple clusters. These clusters
are accumulated in an object local grid which represents the shape
of an object as a footprint.
This paper is structured as follows. Section 2 gives a brief overview
about our occupancy grid mapping and feature extraction. In sec-
tion 3 we present our particle filter based tracking and give an
overview of the track management. Some experimental results are
given in section 4 and finally in section 5 conclusions and future
work are discussed.
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2. OCCUPANCY GRID MAPPING AND DYNAMIC
ESTIMATION

In our case a complete representation of the environment is built
from the measurements of multiple multilayer lidar sensors. We
accumulate these measurements using a grid based fusion tech-
nique in a single occupancy grid map using DST. At the end of
this section we introduce an approach for grid based dynamic esti-
mation based on the work of [5].

2.1. Dempster Shafer Theory on Occupancy Grid Maps

The Dempster Shafer theory is a mathematical theory allowing
the combinations of evidences [8]. An evidence can be estimated
by multiple sources and an own degree of belief. In DST all
possible hypothesis of a system are defined by a set Ω of mutu-
ally exclusive propositions. We define for occupancy grid map-
ping the set as Ω = {f, o} where f is the state for a free and
o is the state for an occupied cell. The elements of the powerset
2Ω = {∅, {f}, {o}, {f, o}} can be used to represent the actual
state of the system. DST uses mass functions m : 2Ω 7→ [0, 1] as-
signing a belief mass to each element of the power set. Notice that
the sum over all mass function is defined by:

∑
A∈2Ω m(A) = 1.

mM⊕N (A) =
1

η

∑
B∩C=A 6=∅

mM (B) ·mN (C) (1)

η =1−
∑

B∩C=∅

mM (B) ·mN (C)

The set A ⊆ Ω contains all elements that represent a state of in-
terest. Dempster’s rule for combination (see equation 1) is used
to combine the two sets of masses mM and mN . Where η can be
regarded as the agreement of the belief of the masses. The fusion
process of an occupancy grid map is committed on cell level.
Extending the idea of occupancy grid mapping, we create sepa-
rated measurement grid layers for each purpose. Layer1 encom-
passes the original idea of grid mapping and builds a model for the
static environment in the view of the ego vehicle. In Layer1 we
use the power set 2Ω. The measurement grid map and the occu-
pancy grid map itself are both grid maps with the same attributes.
So we are defining two mass functions: mM,k() as the mass func-
tion for the occupancy grid and mS,k() for the measurement grid.

2.2. Fusion Architecture

Accumulating information gathered from multiple sensors at dif-
ferent time slots a fusion process is needed in order to build a con-
sistent grid map. For each laser scanner an own measurement grid
map (MeasGrid) is built (see figure 1). So the process of occu-
pancy grid mapping is triggered by every lidar scan. All measure-
ment grids have to be in the same coordinates as the current grid
map (GridMapk) representation. Therefore each measurement
has to be mapped to a joint coordinate system. Matching the mea-
surement grid with the occupancy grid (GridMapk−1) the accu-
rate vehicle position and orientation V ehGridPos within the grid
map has to be estimated. Using the estimated V ehGridPos each
measurement grid is fused with the occupancy grid map applying
equation 1. The applied sensor model is split into two processes:
the free space and the occupied space estimation. This separation
is done because the free space estimation require a lot more sensor
specific tuning. As long as similar laser scanners with the same

Figure 1: System Fusion Architecture in a UML 2.0 activity di-
agram. Blue arrows describe activity transitions. Black arrows
show the flow of objects.

update frequency are used, a measurement grid map can be fused
to the occupancy grid map using Dempster’s rule of combination
shown in equations 2 . . . 4.

mM,k(O) =mM,k−1⊕S,k(O) (2)
mM,k(F ) =mM,k−1⊕S,k(F ) (3)
mM,k(Ω) =1−mM,k(O)−mM,k(F ) (4)

The mass mS,k is measured by an individual scanner S at time k
(F = {f} ,O = {o}).

2.3. Dynamic Estimation

A grid based dynamic detection is based on the assumption that a
laser beam aimed at a static object should always end in the same
cell. This assumption holds when an accurate vehicle odometry is
available for map compensation. Using the occupancy grid map as
a reference for all measurements accumulated until time slot k the
current measurement can be matched against the map to enable
two assumptions of the dynamic state: On the one hand a laser
beam that ends in an occupied cell is an evidence of a static mea-
surement. On the other hand a beam that ends in a free cell is an
evidence of dynamic measurement (see equation 5).
The dynamic detection in occupancy grid maps is extensively stud-
ied with respects to the used grid mapping algorithm. Both [9]
and [3] use conflicting measurements in bayesian occupancy grids.
In contrast, [5] uses the same assumption of conflicting measure-
ments in evidential grids. To validate the assumption of a dynamic
measurement, it is useful to generate an estimation that a cell is
not occupied by a dynamic object. These results can be integrated
in a Dempster Shafer belief mass. For the dynamic estimation we
define a second power set 2∆ = {∅, {d}, {d}, {d, d}}, where d
is the state of a dynamic measurement and d is the state of a con-
tradictory measurement. Representing dynamic measurements of
the environment, we create a separate grid map layer Layer2 that
includes all dynamic measurement. The belief masses mS,k(D)
and mS,k(D) describe a measurement of the dynamic and the not
dynamic state (D = {d}, D = {d}). For the term mS,k(D) the
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motion detection algorithm proposed in [5] is used here. Equa-
tions 5 and 6 show the measurement of a conflict estimated to be
dynamic as proposed in [5].

C1 =mS,k(O) ∗mM,k−1(F ), when f turns to o (5)
C2 =mS,k(F ) ∗mM,k−1(O), when o turns to f (6)

Where C1 describes a cell which is currently occupied with a dy-
namic object (new dynamic). C2 describes a cell which is freed by
an moving object (old dynamic). Using the conflict C1 between
the measurement and the map, we propose to extend this motion
detection algorithm with an estimation d, which determines that
the current cell is not dynamic. Every measurement that falls on
a free cell could be estimated as dynamic but due to discretization
errors and noisy measurements we need an estimation that the cell
is not dynamic D. For every cell we take the state of neighbouring
cells into account:

mS,k(D) =C1 (7)

mS,k(D) =α
∑
n∈N

mMn,k−1(O) (8)

The mass belief function formS,k(D) can be described as the sum
of all neighbour cells (n ∈ N ) where α is a normalization constant
andN is the set of relevant neighbours. We propose to take the be-
lief of all eight neighbouring cells as the noise measurement sum
for belief mass mS,k(D). For the belief mass of mS,k(D) we
only take the conflict measurement C1 into account, because C1

describes where the moving object is currently located.
Before we can combine the belief masses of Layer2, the move-
ments of all object local grid maps have to be predicted. Therefore
this update is separated from the static environment beliefs and is
discussed in section 3.4.

3. DYNAMIC CLUSTER TRACKING

At this stage we have introduced a layered occupancy grid map
built from several sensors. Layer1 for the static environment de-
termine a cell is occupied or free and Layer2 for the dynamic en-
vironment estimating the belief for a dynamic and a not dynamic
cell. In this chapter we only refer to Layer2 in order to track ob-
jects from the dynamic estimation of the measurement grid map.
To generate features from the dynamic estimation we build clus-
ters for all dynamic cells using the db−scan algorithm [10]. Each
cluster consists of a minimum of two cells each containing two be-
liefs: one for the dynamic and one for the not dynamic belief. Once
a dynamic belief for each cell cluster is estimated, it can be used
to set up object tracks. In contrast to other tracking approaches
dynamic cell clusters, allow us to track the dynamic environment
only.
The object model of a single tracked object is shown in figure 2.
The track management, object model, association strategy and track-
ing algorithm are described in this section.

3.1. Particle Filters

A dynamic model and tracking algorithm is required for estimating
directions and velocities. Cell clusters are a viable starting point.
Vu [2] tracks dynamic clustered cells by using a Kalman filter and
interactive multi model (IMM) algorithm. In contrast, [11] and
[12] use particle filters. Particle filters belong to the monte carlo

Figure 2: Object model in grid coordinates uses clustered dynamic
cells (L). Grid map is rotated around ego vehicles course angle.

methods. They approximate the posterior density of the state space
with a known transition model combined with a noise assumption.
Or in other words particle filter approximate inference in partially
observable Markov chains. Notice the state of the Markov chain at
time t is given by xt. Furthermore, the state xt depends on the pre-
vious state xt−1 according to the probabilistic law p(xt|ut, xt−1),
where ut is the control arrived in the intervall [t− 1, t]. The state
in the Markov chain is not observable directly. But we can use the
measurement zt, which can be used as a probabilistic projection to
the true state xt via the propabilistic law p(zt|xt). For the object
tracking case, p(xt|ut, xt−1) is referred as a motion model, and
p(zt|xt) as the measurement model (see equation 9). Applying a
particle filter to the object tracking problem the controls (ut) are
usually velocity and yaw-rate of the tracked object. The state of

Algorithm 1: general particle filter algorithm see [13]
Data: previous particles Pf,t−1, control vector ut,

measurement zt
Result: particle weights w(i)

k , new particle set Pf,t

Pf,t= Pf,t=0 ;1
for m = 1 . . .M particles in Pf,t−1 do2

sample xmt with motion model p(xt|ut, x
m
t−1) ;3

wm
t = p(zt|xmt ) ;4

// append calculated particle to set:5

Pf,t = Pf,t + {xmt , wm
t } ;

end6

for i = 1 . . .M particles in Pf,t do7
draw i with probability ∝ wi

t ;8

add xit to Pf,t ;9

end10
return Pf,t;11

an object tracked with particle filters is represented as multiple hy-
pothesis (i.e. particles). Each particle contains a state hypothesis
(xpt ) of the tracked object and its weight (wp

t ). As a first step of
the particle filter algorithm, the state of a particle is predicted us-
ing a motion model (line 3 of algorithm 1). The motion model is
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applied by drawing a sample in the state space with the probability
p(xt|ut, x

m
t−1). After the prediction step the particle is weighted

(line 4). The particle weight is determined by the likelihood of the
agreement p(zt|xt) between the particle state and current mea-
surement (zt). The object state of a particle filter is strongly mod-
ified by the weights of its particles (see 1 lines 8,9 ). Particle with
low weights are replaced with high weighted particles. This is the
typical survival of the fittest methodology of a particle filter.
As an advantage over other tracking algorithms, particle filters are
able to track non-linear state spaces and noise can be modeled in
any required form. We use particle filters as an experimental ap-
proach because they are easy to implement and offer the ability to
track multiple object hypothesis in one filter.

3.2. Object Model

Taking advantage of the clustered dynamic cells proposed in the
last section, particle filters are used to represent an object. Parti-
cles that track cells as proposed in [11] [12] have the property of
converging on the measurement. This is no disadvantage as long
as the whole object is visible in the majority of measurements,
but it suffers when objects are partly occluded [14]. A box rep-
resentation of the object to be tracked is used by [15] [16]. In an
object box representation all measurements have to be fitted to a
box. But a box might not be a good model for every situation. The
state of a particle is proposed as s(k) = (L, x, y, ẋ, ẏ, ω) where
L = {(c1), (c2), . . . (cn)} is the set of clustered dynamic cells de-
scribing the associated measurement (see figure 2).
We use a Constant Turn Rate and Velocity (CTRV) model as state
representation assuming the velocity (ẋ, ẏ) and the yaw rate ω are
constant. The weight of a particle is estimated by the matching of
the particle’s object hypothesis and current measurements.

p(zjk|x
(p)
t ) = λ · |L

z
j
k
∩ L

x
(p)
t
| (9)

The above equation is a matching function calculating the clus-
ter (L) overlap of the object hypothesis of a particle x(p)

t and a
measurement zjk. This weighting function could be described as
sum over all dynamic beliefs of the current measurement grid cell,
which matches with the cell cluster set L of the particle, normal-
ized by the constant λ.
We combine all particles representing the same object in a parti-
cle set (Pf ) in order to build a free form object model

∑
p∈Pf

L

(footprint in figure 3). Particles are initialized by a single dy-
namic cluster (L). A motion prediction step is performed in order
to match the position of the particles to the new measurement. If all
particles of a particle set are combined, they can be used as a free
form model, namely footprint Fp (see figure 3). The fooprint
combines all particles with its cell cluster L to an object repre-
sentation in grid coordinates. The resulting object state is a set of
cells described by a hit counter. This hit counter is incremented
if the center of a tracked cell fits into an object local cell. Object
local grids were proposed first by [17]. We modify this approach
to accumulate a dynamic belief for a single object.

3.3. Track Management

The proposed tracking approach encompasses the following track
management features:

• initialization of tracks using clustered dynamic cells

Figure 3: sequential build of free form object model using parti-
cles. In t=2 new particles p4 and p5 are inserted to enable the filter
to track the new object shape.

• growing and shrinking of particle sets (i.e. adding or re-
moving new cluster estimations to the set).

• deletion of divergent particle sets

Fusion of two tracks tracking the same object is beyond the scope
of this paper.
A new particle set is set up if too few particles exist in the asso-
ciation region. To prevent false positives, the cell cluster used for
initialization has to pass the constraint BD ≥ BD , where (BD) is
the mean dynamic belief. As a first guess, all particles are initial-
ized with the original dynamic cluster and a velocity in the interval
[Vs,−Vs]. Only velocities within this interval can be tracked.

3.3.1. Growing

A particle filter once initialized by one dynamic cluster may de-
scribe multiple cluster representations. So new clusters should be
inserted if the original shape of dynamic measurements does not
match any more. Since we do not want to modify existing parti-
cles, we propose to add new particles to the particle filter. There-
fore each particle filter has a maximum size |Pmax| but in the ini-
tial state all particle filters are able to grow or shrink. If a newly
added cluster matches well it will replace other particles, which do
not match anymore. That is a result of the survival of the fittest
methodology of the used SIR particle filter (only the best particle
are drawn). In [13] a similiar aproach for growing and shrinking
of particle filters usingKLD− sampling algorithm is described.
A particle set should grow with a associated measurement that
have more clustered cells |Cmeas| than the mean cluster size |c|
in the particle set (see equation 10).

|Pf | =

{
|Pf |+ δ ∗ (|Pmax| − |Pf |), ifβ ≥ lg
max(|Pmin|, |Pf | − γ), if |CPos| < ls

. (10)

δ =| |Cmeas| − |c|
|c| |
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Condition 1 Condition 2
M ∩ PfPos = ∅ |CPos| ≤ e

Table 1: deletion condition

A new measurement should only be added to the set if it matches
the track well β ≥ lg . Where β is the assignment probability that a
track matches the measurement. This constraint avoids that wrong
associations can break the object state.

3.3.2. Shrinking

In contrast to the growing process the shrinking process only needs
to be called once for each particle filter. We define a minimal
|Pmin| and maximal |Pmax| amount of particles for each particle
set. |Cmeas| is the cluster size of the measured cluster associated
with the track. Let |c| be the mean cluster size of the particle set
Pf . The assignment probability β describes the likelihood that Pf

is associated with Cmeas. The shrinking of a particle set is trig-
gered if the association probability is less than a certain threshold
ls. Additionally the growing of the particle filter is governed by
the threshold lg .
Recall that the positional covariance matrix CPos describes an el-
lipse which expresses the shape of the corresponding point cloud.
Since shrinking is applied after all measurements have been asso-
ciated, we have to compare against the eccentricity |CPos|. The
amount of particles in a particle set (|Pf |) is changed adaptively
with equation 10. The growing / shrinking function is applied at
the weighting step of each particle filter.

3.3.3. Deletion

If any tracked object is not observable anymore, the particle set
should be deleted. The deletion can be triggered by two conditions
as listed in table 1. A particle filter should be deleted if the position
of the tracked object PfPos is not in the perception area of the
map M . A second condition for deletion of an established track is
passed if the filter has lost track of an object. This behaviour can
be determined easily if the particle filter diverges.

3.4. Accumulating Dynamic Estimation for each Object

Validation of resulting tracked objects can be achieved by accumu-
lating the dynamic belief of a measurement (mS,k(D)) in a sep-
arate belief mass determined by the dynamic belief of an object.
The belief mass mO,k(D) is stored as an object attribute. The
dynamic belief for an object is updated using the associated mea-
surement (mS,k) of a cluster. We use the average of the dynamic
beliefs of all relevant cells as the dynamic belief of a cluster.

mO,k(D) =mO,k−1⊕S,k(D) (11)

mO,k(D) =mO,k−1⊕S,k(D) (12)

Using Dempster’s rule again to combine the measured mass with
the prior dynamic estimation, a dynamic belief for each object can
be maintained.

4. RESULTS

The proposed tracking algorithm and dynamic accumulation was
tested on a vehicle equipped with two Ibeo LUX laser scanners.

The environmental modeling using grid maps and the proposed
tracking algorithm are illustrated for two different scenarios. Fig-
ure (4a, 4b, 4c) shows an urban environment with an ego velocity
about 50 km/h. Figure (4d, 4e, 4f ) shows a highway scenario with
ego velocities about 160 km/h.
The Dempster Shafer belief masses are shown with the colours
green for free, red for occupied and blue for the unknown belief
mass (see figure 4c and 4f). The dynamic measurement (yellow)
shown in figure 4b and 4e is strongly dependent on the estimated
free space. With a higher belief of the free mass the estimation
of the dynamic measurement is growing proportionally. This be-
haviour has the benefit that object close to the ego vehicle gain a
higher dynamic belief. The colour purple shows the belief of a
not dynamic measurement.
The red cluster (in figure 4c and 4f) represents the tracked object
footprint. The yellow line describes the velocity vector of the
vehicles. The footprint of the overtaking vehicle in 4f consist of
all shapes ever seen by one scanner. The initial shape of the object
is only the side of the vehicle. Using the proposed model, the ob-
ject shape grows with new measurements (if the back of the car is
seen). The proposed particle filter is able to track any shape of an
object.
In figure 4e the dynamic estimation of the right road boundary ap-
pear dynamic (yellow). This is caused by a misaligned mounting
position of the right laser scanner during the test drive.
The algorithm was tested offline on an Intel Core i7 with 2.8 GHz.
The map generation calculation time is about 3 ms. The tracking
algorithm including clustering and some debug outputs is about 10
ms.

4.1. Implementation Details

The cell size of the used occupancy grid is 20 cm and we built
the occupancy grid of size of 102.4 m x 102.4 m. We statically
allocate memory for all particles ever used in the algorithm up to
a maximum of 8000 particles. Each particle filter starts with 375
particles (|Pmin|) and is able to grow to a size of 500 particles
(|Pmax|).

5. CONCLUSION AND FUTURE WORK

In this paper an environmental modeling technique for vehicles
equipped with multiple laser scanners is presented. We propose
to build a layered occupancy grid map to extend the model of a
static environment with information produced by dynamic objects.
These dynamic information could be clustered and tracked using
particle filters. As free form object model, multiple particles gen-
erate an object local grid map. As mentioned in [5] the two types
of cell conflict C1 and C2 could be used for estimating the direc-
tion of the motion. A direction could be useful for a faster track
initialization of the used particle filter algorithm. The initial state
of each particle could be initialized by a first estimation of the di-
rection in order to improve the convergence speed of the particle
filter.
We plan to compare the implemented particle filter tracking against
a Kalman filter tracking comparing initialization time and position
error.
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(a) video view as reference for the urban scenario (b) dynamic measurement grid map (c) occupancy grid map with tracked object as
footprint (red cell cluster)

(d) video view as reference for the highway scenario (e) dynamic measurement grid map (f) occupancy grid map with tracked
object as footprint (red cell cluster)

Figure 4: Grid based tracking and dynamic detection in an urban and highway scenario. The dynamic measurement grid shows yellow for
the dynamic belief mass and purple for the not dynamic belief mass.

6. ACKNOWLEDGEMENTS

This work is funded by the Federal Ministry of Education and Re-
search of Germany (BMBF) within the RECBAR project.

7. REFERENCES

[1] Alberto Elfes, Occupancy grids: a probabilistic framework
for robot perception and navigation, Ph.D. thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 1989.

[2] Trung-Dung Vu, J. Burlet, and O. Aycard, “Grid-based lo-
calization and online mapping with moving objects detection
and tracking: new results,” in Intelligent Vehicles Sympo-
sium, 2008 IEEE, June 2008, pp. 684–689.

[3] M.E. Bouzouraa and U. Hofmann, “Fusion of occupancy
grid mapping and model based object tracking for driver as-
sistance systems using laser and radar sensors,” in Intelligent
Vehicles Symposium (IV), 2010 IEEE, 2010, pp. 294–300.

[4] T. Weiss, B. Schiele, and K. Dietmayer, “Robust driving
path detection in urban and highway scenarios using a laser
scanner and online occupancy grids,” in Intelligent Vehicles
Symposium, 2007 IEEE, 2007, pp. 184–189.

[5] J. Moras, V. Cherfaoui, and P. Bonnifait, “Moving objects de-
tection by conflict analysis in evidential grids,” in Intelligent
Vehicles Symposium (IV), 2011 IEEE, 2011, pp. 1122–1127.

[6] Christophe Coué, Cédric Pradalier, Christian Laugier,
Thierry Fraichard, and Pierre Bessiere, “Bayesian Occu-
pancy Filtering for Multitarget Tracking: an Automotive Ap-
plication,” International Journal of Robotics Research, vol.
25, no. 1, pp. 19–30, Jan. 2006.

[7] Mohamed Essayed Bouzouraa, Belegungskartenbasierte
Umfeldwahrnehmung in Kombination mit objektbasierten
Ansätzen für Fahrerassistenzsysteme, Ph.D. thesis, Technis-
che Universität München, 2011.

[8] Glenn Shafer, A Mathematical Theory of Evidence, Prince-
ton University Press, Princeton, 1976.

[9] Trung-Dung Vu, O. Aycard, and N. Appenrodt, “Online lo-
calization and mapping with moving object tracking in dy-
namic outdoor environments,” in Intelligent Vehicles Sympo-
sium, 2007 IEEE, 2007, pp. 190–195.

[10] Martin Ester, Hans peter Kriegel, Jörg S, and Xiaowei Xu, “A
density-based algorithm for discovering clusters in large spa-
tial databases with noise,” 1996, pp. 226–231, AAAI Press.

MInfSem-6



Proc. of the MInf Seminar at the Dept. of Computer Science of the Hamburg University of Applied Sciences, Summer 2014

[11] Matthias R. Schmid, Umgebungserfassung für Fahrerassis-
tenzsysteme mit hierarchischen Belegungskarten, Ph.D. the-
sis, Universität der Bundeswehr München, Fakultät für Luft-
und Raumfahrttechnik, Neubiberg, 2012.

[12] Boyoon Jung and GauravS. Sukhatme, “Real-time motion
tracking from a mobile robot,” International Journal of So-
cial Robotics, vol. 2, no. 1, pp. 63–78, 2010.

[13] Sebastian Thrun, Wolfram Burgard, and Dieter Fox, Prob-
abilistic Robotics, Intelligent Robotics and Autonomous
Agents. MIT Press, Cambridge, MA, 2005.

[14] D. Schulz, W. Burgard, D. Fox, and A.B. Cremers, “Tracking
multiple moving targets with a mobile robot using particle
filters and statistical data association,” in Robotics and Au-
tomation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, 2001, vol. 2, pp. 1665–1670 vol.2.

[15] Anna Petrovskaya and Sebastian Thrun, “Model based ve-
hicle detection and tracking for autonomous urban driving,”
Autonomous Robots, vol. 26, no. 2-3, pp. 123–139, 2009.

[16] K. Schueler, T. Weiherer, E. Bouzouraa, and U. Hofmann,
“360 degree multi sensor fusion for static and dynamic ob-
stacles,” in Intelligent Vehicles Symposium (IV), 2012 IEEE,
2012, pp. 692–697.

[17] Jan Effertz, Autonome Fahrzeugführung in urbaner Umge-
bung durch Kombination objekt- und kartenbasierter Um-
feldmodelle, Ph.D. thesis, Technischen Universität Carolo-
Wilhelmina zu Braunschweig, Februar 2009.

MInfSem-7


	1  INTRODUCTION
	2  OCCUPANCY GRID MAPPING AND DYNAMIC ESTIMATION
	2.1  Dempster Shafer Theory on Occupancy Grid Maps
	2.2  Fusion Architecture
	2.3  Dynamic Estimation

	3  DYNAMIC CLUSTER TRACKING
	3.1  Particle Filters
	3.2  Object Model
	3.3  Track Management
	3.3.1  Growing
	3.3.2  Shrinking
	3.3.3  Deletion

	3.4  Accumulating Dynamic Estimation for each Object

	4  RESULTS
	4.1  Implementation Details

	5  CONCLUSION AND FUTURE WORK
	6  ACKNOWLEDGEMENTS
	7  References

