

Asynchronous Traffic Shaper in an Aircraft Cabin Use-case

Use-case

Cabin announcements require a maximum delay of 20 ms from source to speaker, they have the strictest time requirement within the aircraft cabin. All streams are processed on a central server, which is connected to all network nodes in a **star-chain topology**. [3] Figure 2 shows the longest path one such announcement stream can take. The source and spreaker each are located on the last hop of a longest chain. Frames need to take the maximum amount of hops to and from the central server.

Asynchronous Traffic Shaper

ATS is defined in IEEE 802.1Qcr, providing per stream shaping based on a token bucket algorithm and independent of time synchronization. Each incoming frame is assigned an *eligibility time* by the **ATS scheduler** for its stream. Figure 1 shows how Frame P_1 and P_2 both become eligible when there are enough tokens, either on or soon after arrival. The in- and decrease of tokens depends on the *Committed*-InformationRate and CommittedBurstSize parameters of the scheduler. A third parameter, MaximumResidenceTime, leads to frame drops if the calculated eligibility time is later than arrivaltime + MaximumResidenceTime(Frame P_3). The frame is then queued according to priority, the **ATS transmission selec**tion algorithm marks the frame as selectable if the eligibility time is reached. All selectable frames are transmitted in order of their eligibility time. [4]

Teresa Lübeck

teresa.luebeck@haw-hamburg.de Hamburg University of Applied Sciences (HAW), Germany

Figure 2:Longest paths of cabin announcements streams.

Impact on Delays

It is necessary to identify critical points in the configurations to determine if it is feasible to use ATS for the cabin announcement use-case.

The specific **Network topology** has two characteristics that require a deeper analysis.

- The **central server** introduces a bottleneck. Every stream in the network has to go through the hop to the server.
- Chains increase the delay due to potentially long paths. Cross-traffic has additional impact on each hop.

ATS Configuration needs to cover edge cases in the stream behaviour.

- Streams may have a **higher data-rate** than configured in the network, for example due to clock-drift on the source.
- Frames may be delayed by cross-traffic leading to **unexpected bursts** on the path.

References

[1] Ž. Maletić, M. Ljubojević, and M. Savić, "Comparative analysis of time-sensitive network scheduling [3] W. Steiner, P. Heise, and S. Schneele, "Recent ieee 802 developments and their relevance for the avionics industry," in 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC), pp. 2A2-1-2A2-12, 2014.

- [4] "leee standard for local and metropolitan area networks-bridges and bridged networks amendment 34: Asynchronous traffic shaping," IEEE Std 802.1Qcr-2020, pp. 1-151, 2020.
- [5] A. Grigorjew, F. Metzger, T. Hoßfeld, and J. Specht, "A simulation of asynchronous traffic shapers in switched ethernet networks," in 2019 International Conference on Networked Systems (NetSys), pp. 1–6, 2019.

Delay analysis via Simulation

Simulations of the use-case can help analysing if the delay requirements can be met. OM-Net++ 6.0.1 ^a and INET 4.5.0^b were used for this work. Several scenarios were designed to quantify the impact of the network topology and identify robust ATS configurations.

^awww.omnetpp.org ^binet.omnetpp.org

Limits of the Implementation

- Simulations inherently lack full case-coverage, found delays are not the worst-case
- Influence of network topologies on ATS is not yet investigated[5]
- Use-case implementation based off estimations for cross-traffic
- Scenarios use single configuration for other TSN mechanisms

Conclusion

- Network topology, stream definitions and ATS configuration all impact the delay of streams
- Simulations help estimate delays for use case, but are unable to show worst-cases
- ATS is not fully analyzed yet

and traffic shaping mechanisms for a380 aircraft network topology," in 2023 31st Telecommunications Forum (TELFOR), pp. 1-4, IEEE, 2023.

^[2] C. Mauclair, M. Gutiérrez, J. Migge, and N. Navet, "Do we really need tsn in next-generation helicopters? insights from a case-study," in 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), pp. 1–7, 2021.